BIO 489/589: Natural and Unnatural Adaptations of Biomolecular Tools

Innovation transcends parochial disciplines.

With information no longer the limiting resource, knowing how to evaluate, manage and recombine scientific information into new questions or novel applications becomes a core target of any STE2M learning. To gain courage required to innovate, we will delve into what others have garnered at the interfaces of molecular biology with a wide spectrum of other scientific disciplines and engineering technologies. Students will be expected to 1) lead some introductory lectures to select topics, 2) identify and share the relevant peer-reviewed articles, educational videos/lectures, popular literature/blog sites, 3) actively participate in all group discussions, and 4) formulate & express their ethical stance(s) and identify at least one area where that was changed by the newly-learned information.

A topic or two / week:

- Molecular origins of life on Earth
- MDR in bacteria, fungi and cancer
- Pollution in people: how and why and epigenetic impacts
- RNA in membrane-less organelles; biomolecular condensates (LLPS)
- Innate intracellular immunity/inflammasomes, TLRs
- Molecular (DNA/RNA-based) bio-sensors
- Stem cells of the many kinds
- Gene therapy (viral vectors)
- RNA interference (RNAi)
- Genome editing / CRISPR
- DNA-based computation
- Recombinant vaccines
- Bioterrorism
- GMOs
- Genetics of human behavior
- RNA/DNA based drug design (SELEX)
- Ribozymes / in vitro (directed) evolution
- Many flavors of DNA mining / bioinformatics
- Phage display (bio-electronic interfaces)
- Artificial nucleic acids and peptides
- Epigenetic imprinting in life and therapeutics
- Molecular timekeepers and counters, telomeres
- Ethics/morality/justice/politics/affordability of biotechnology

Learn the rules so you know how to break them properly.

Dalai Lama