Numerical Analysis Qualifying Exam

Mathematics Department, New Mexico Tech
Spring 2009

(Answer all six problems)

1. Describe the solution of the least squares problem

$$
\min _{\bar{x} \in R^{n}}\left\|A \bar{x}-\bar{b}_{2}\right\|
$$

by the QR factorization method where $A \in R^{m \times n}, m>n$ and the rank of A is known.
2. Develop the steepest descent method for solving the linear system, $A \bar{x}=\bar{b}$, with $A \in R^{n \times n}$, a positive definite matrix. Describe the selection of the search direction, the steplength, and discuss the update of the residual.
3. Let

$$
f(x)=\frac{1-\sin x}{\pi / 2-x}
$$

(a) Explain why straight forward evaluation of $f(x)$ in double precision floating point arithmetic produces wildly inaccurate answers for x near $\pi / 2$.
(b) Derive an alternative formula that is much more accurate for x near $\pi / 2$.
4. Consider the equation

$$
x+\log x=0
$$

Here \log is the logarithm to the base e. This equation has a solution somewhere near $x=0.5$. Derive a fixed point iteration scheme (other than the Newton's method) for solving this equation. Show that your fixed point iteration will converge if x_{0} is sufficiently close to the root. Starting with $x_{0}=0.5$, use your iteration to solve the equation, obtaining a root accurate to 4 digits.
5. Given the ODE

$$
\begin{aligned}
y^{\prime}(t) & =f(t, y(t)) \\
y(0) & =y_{0}
\end{aligned}
$$

(a) Derive the Adams-Bashforth Two-Step Exlicit Method

$$
w_{i+1}=w_{i}+\frac{h}{2}\left[3 f\left(t_{i}, w_{i}\right)-f\left(t_{i-1, w_{i-1}}\right)\right]
$$

where $h>0$, and $t_{i}=i h, i=0,1, \ldots$.
(b) Show that the truncation error is given by

$$
\tau_{i+1}=\frac{5}{12} y^{\prime \prime \prime}\left(\mu_{i}\right) h^{2}
$$

where $\mu_{i} \in\left(t_{i}, t_{i+1}\right)$.
6. Let $f(x) \in C^{4}[a, b]$. For any $y, z \in R$, Simpson's rule is given by

$$
S(y, z)=\frac{h}{3}\left[f(y)+4 f\left(\frac{y+z}{2}\right)+f(z)\right]
$$

where $h=\frac{z-y}{2}$, and, in particular, satisfies

$$
\int_{a}^{b} f(x) d x=S(a, b)-\frac{h^{5}}{90} f^{(4)}(\mu)
$$

for some $\mu \in[a, b]$. The composite Simpson's rule satisfies

$$
\int_{a}^{b} f(x) d x=S\left(a, \frac{a+b}{2}\right)+S\left(\frac{a+b}{2}, b\right)-\frac{b-a}{180}\left(\frac{h}{2}\right)^{4} f^{(4)}(\tilde{\mu})
$$

for some $\tilde{\mu} \in[a, b]$, and where $h=\frac{b-a}{2}$.
(a) By equating the above relations and assuming that $f^{(4)}(\mu)=f^{(4)}(\tilde{\mu})$ derive an approximatation for the error

$$
E(a, b)=\left|\int_{a}^{b} f(x) d x-S\left(a, \frac{a+b}{2}\right)-S\left(\frac{a+b}{2}, b\right)\right|
$$

involving $S(a, b), S\left(a, \frac{a+b}{2}\right)$, and $S\left(\frac{a+b}{2}, b\right)$.
(b) Describe how an adaptive composite Simpson's algorithm can be developed from this error estimate to obtain an approximation to $\int_{a}^{b} f(x) d x$ to a desired accuracy of $\varepsilon>0$. You don't have to be specific about the algorithm, just describe how it would work in general.

