Ph.D. Preliminary Examination in Numerical Analysis
Department of Mathematics
New Mexico Institute of Mining and Technology August 12, 2019, 9 AM - 1 PM, Weir 202

1. This exam is four hours long.
2. You need a scientific calculator for this exam.
3. Work out all six problems.
4. Start the solution of each problem on a new page.
5. Number all of your pages.
6. Sign your name on the following line and put the total number of pages.
7. Use this sheet as a coversheet for your papers.

NAME: \qquad No. of pages:

Problem 1.

Consider the function

$$
F(x)=\tan ^{-1}(x)
$$

on an interval $a \leq x \leq b$, where $0<a<b$. Show that function $F(x)$ is contractive on this interval and find the smallest value of λ such that

$$
|F(x)-F(y)| \leq \lambda|x-y|
$$

for every x and y in the interval $[a, b]$.

Problem 2.

a) Prove that unitarily similar matices have the same eigenvalues.
b) Let A and B be unitarily similar matrices. Express eigenvectors of B in terms of eigenvectors of A.

Problem 3.

Let A be $m \times n$ real matrix, $m \geq n$, and let A have rank n. Let $b \in R^{m}$. Prove the following statements:
a) There exists unique $x \in R^{n}$ minimizing $\|A x-b\|_{2}^{2}$, where $\|\cdot\|_{2}$ is the 2-norm.
b) The matrix $A^{T} A$ is invertible and $x=\left(A^{T} A\right)^{-1} A^{T} b$.

Problem 4.

Find the constants c_{0}, c_{1} and x_{1} so that the quadrature formula

$$
\int_{0}^{1} f(x) d x=c_{0} f(0)+c_{1} f\left(x_{1}\right)
$$

has the highest possible degree of precision. What is the degree of precision of the quadrature formula?

Problem 5.

a) State the theorem on convergence of the fixed point iteration $x_{n+1}=g\left(x_{n}\right)$ with a function $g(x)$ defined on the interval $[a, b]$.
b) Let $\left\{x_{n}\right\}$ be the convergent sequence generated by the fixed point iteration, let x_{*} be a fixed point of $g(x)$, and let $k=\max _{x \in[a, b]}|g(x)|$. Give an estimate of the error $\left|x_{n}-x_{*}\right|$ in terms of k.
c) Consider the function $g(x)=x^{2}+\frac{3}{16}$. Find all fixed points of $g(x)$.
d) For each of the fixed points, explain why or why not the fixed point iteration with $g(x)$ is guaranteed to converge. If fixed point iteration is guaranteed to converge, specify an interval $[a, b]$ such that, for any initial guess $x_{0} \in[a, b]$, the fixed point iteration produces a convergent sequence.
e) For each convergent fixed point iteration, determine how many iterations are required to reduce the error by a factor of 10 .

Problem 6.

a) Describe the power method for computing the dominant eigenvalue and a corresponding eigenvector of a matrix.
b) Find the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{ll}
6 & 4 \\
4 & 6
\end{array}\right)
$$

Is the matrix semi-simple (diagonalizable)? Does it have a dominant eigenvalue?
c) Demonstrate convergence of the power method by performing four iterations on matrix A with the initial guess $v=(1,0)^{T}$.
d) Compute the relative errors of the obtained approximations using the ∞-norm.

Solutions

Problem 1.

Consider the function

$$
F(x)=\tan ^{-1}(x)
$$

on an interval $a \leq x \leq b$, where $0<a<b$. Show that function $F(x)$ is contractive on this interval and find the smallest value of λ such that

$$
|F(x)-F(y)| \leq \lambda|x-y|
$$

for every x and y in the interval $[a, b]$.

Solution.

Take any two points x and y in $[a, b]$. Recall that the derivative of $\tan ^{-1}(x)$ is $1 /\left(1+x^{2}\right)$. By the mean value theorem,

$$
F(x)-F(y)=F^{\prime}(\xi)(x-y)
$$

for some ξ in the interval between x and y. Thus

$$
|F(x)-F(y)|=\left(1 /\left(1+\xi^{2}\right)\right)|x-y|
$$

Since the largest possible value of $1 /\left(1+\xi^{2}\right)$ occurs at $\xi=a$,

$$
|F(x)-F(y)| \leq\left(1 /\left(1+a^{2}\right)\right)|x-y|
$$

for every x and y in $[a, b]$. Note that $1 /\left(1+a^{2}\right)<1$. Thus F is a contractive mapping on $[a, b]$ and the best possible value of λ is $1 /\left(1+a^{2}\right)$.

Problem 2.

a) Prove that unitarily similar matices have the same eigenvalues.
b) Let A and B be unitarily similar matrices. Express eigenvectors of B in terms of eigenvectors of A.

Solution.

Let λ be any eigenvalue of A. Then

$$
\begin{gathered}
\operatorname{det}(A-\lambda I)=0 \\
\operatorname{det}(Q) \operatorname{det}(A-\lambda I) \operatorname{det}\left(Q^{*}\right)=0 \\
\operatorname{det}\left(Q(A-\lambda I) Q^{*}\right)=0 \\
\operatorname{det}\left(Q A Q^{*}-\lambda Q Q^{*}\right)=0
\end{gathered}
$$

But $Q Q^{*}=I$, so

$$
\operatorname{det}\left(Q A Q^{*}-\lambda I\right)=0
$$

Since $B=Q A Q^{*}$,

$$
\operatorname{det}(B-\lambda I)=0
$$

Thus λ is an eigenvalue of B.
Conversely, if λ is an eigenvalue of B, then since

$$
B=Q A Q^{*}
$$

we have

$$
Q^{*} B Q=A
$$

By the same arguement as above, if λ is an eigenvalue of B, then λ is an eigenvalue of A.

If v is an eigenvector of A with eigenvalue λ, then

$$
\begin{gathered}
A v=\lambda v \\
Q^{*} B Q v=\lambda v \\
B(Q v)=\lambda(Q v)
\end{gathered}
$$

Thus $Q v$ is an eigenvector of B with eigenvalue λ.

Problem 3.

Let A be $m \times n$ real matrix, $m \geq n$, and let A have rank n. Let $b \in R^{m}$. Prove the following statements:
a) There exists unique $x \in R^{n}$ minimizing $\|A x-b\|_{2}^{2}$, where $\|\cdot\|_{2}$ is the 2-norm.
b) The matrix $A^{T} A$ is invertible and $x=\left(A^{T} A\right)^{-1} A^{T} b$.

Solution.

a) Let the SVD decomposition of A be $A=U \Sigma V^{T}$, where $U \in R^{m \times m}$ and $V \in R^{n \times n}$ are orthogonal matrices, $\Sigma \in R^{m \times n}$ has non-zero entries $\operatorname{Sigma}_{i, i}=\sigma_{i}$ (for $i \leq n$, where σ_{i} are the singular values).

$$
\|A x-b\|_{2}^{2}=\left\|U^{T}(A x-b)\right\|_{2}^{2}=\left\|U^{T} A x-U^{T} b\right\|_{2}^{2}=\left\|\Sigma\left(V^{T} x\right)-U^{T} b\right\|_{2}^{2} .
$$

Let $y=V^{T} x \in R^{n}$ and $c=U^{T} b \in R^{m}$, then

$$
\|A x-b\|_{2}^{2}=\|\Sigma y-c\|_{2}^{2}=\sum_{i=1}^{n}\left|\sigma_{i} y_{i}-c_{i}\right|^{2}+\sum_{i=n+1}^{m}\left|c_{i}\right|^{2}
$$

Therefore, $\|A x-b\|_{2}^{2}$ is minimized if and only if $\sigma_{i} y_{i}-c_{i}=0$ (i.e., $y_{i}=c_{i} / \sigma_{i}$) for $i=1, \ldots, n$. Consequently, the solution $x=V y$ is uniquely determined.
b) First show the invertibility.

$$
\begin{equation*}
A^{T} A=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{T} \Sigma V^{T} \tag{1}
\end{equation*}
$$

The matrix $\Sigma^{T} \Sigma \in R^{n \times n}$ is a diagonal matrix with all n non-zero main-diagonal entries $\sigma_{i}^{2}(i=1, \ldots, n)$, so it is invertible. Therefore, $\left(A^{T} A\right)^{-1}=V\left(\Sigma^{T} \Sigma\right)^{-1} V$. The least squares problem $\|A x-b\|_{2}^{2}$ is minimized if and only if $A x-b \in N\left(A^{T}\right)$ (i.e., $A^{T}(A x-b)=0$). Then the solution x satisfies $A^{T} A x=A^{T} b$. Since $A^{T} A$ is invertible, x can be solved as $x=\left(A^{T} A\right)^{-1} A^{T} b$.

Problem 4.

Find the constants c_{0}, c_{1} and x_{1} so that the quadrature formula

$$
\int_{0}^{1} f(x) d x=c_{0} f(0)+c_{1} f\left(x_{1}\right)
$$

has the highest possible degree of precision. What is the degree of precision of the quadrature formula?

Solution.

Let $f(x)=1$, then $\int_{0}^{1} 1 d x=c_{0}+c_{1}$.
Let $f(x)=x$, then $\int_{0}^{1} x d x=c_{0} 0+c_{1} x_{1}$.
Let $f(x)=x^{2}$, then $\int_{0}^{1} x^{2} d x=c_{0} 0+c_{1} x_{1}^{2}$.
Simply the equations, we end up with

$$
\begin{aligned}
1 & =c_{0}+c_{1} \\
\frac{1}{2} & =c_{1} x_{1} . \\
\frac{1}{3} & =c_{1} x_{1}^{2} .
\end{aligned}
$$

The values of the constants are

$$
c_{0}=\frac{1}{4}, c_{1}=\frac{3}{4}, x_{1}=\frac{2}{3} .
$$

Problem 5.

a) State the theorem on convergence of the fixed point iteration $x_{n+1}=g\left(x_{n}\right)$ with a function $g(x)$ defined on the interval $[a, b]$.
b) Let $\left\{x_{n}\right\}$ be the convergent sequence generated by the fixed point iteration, let x_{*} be a fixed point of $g(x)$, and let $k=\max _{x \in[a, b]}|g(x)|$. Give an estimate of the error $\left|x_{n}-x_{*}\right|$ in terms of k.
c) Consider the function $g(x)=x^{2}+\frac{3}{16}$. Find all fixed points of $g(x)$.
d) For each of the fixed points, explain why or why not the fixed point iteration with $g(x)$ is guaranteed to converge. If fixed point iteration is guaranteed to converge, specify an interval $[a, b]$ such that, for any initial guess $x_{0} \in[a, b]$, the fixed point iteration produces a convergent sequence.
e) For each convergent fixed point iteration, determine how many iterations are required to reduce the error by a factor of 10 .

Solution.

Theorem.

Let $g(x)$ be a continuously differentiable function on the interval $[a, b]$ such that

$$
g(x) \in[a, b], \forall x \in[a, b],
$$

let $k=\max _{x \in[a, b]}|g(x)|$. If $k<1$, then function $g(x)$ has a unique fixed point $x_{*} \in[a, b]$, the fixed point iteration $x_{n+1}=g\left(x_{n}\right)$ converges to x_{*} for any initial guess $x_{0} \in[a, b]$, and the following error estimate holds

$$
\left|x_{n}-x_{*}\right| \leq k^{n}\left|x_{0}-p\right| .
$$

The number of iterations required to reduce the error by a factor of 10 is at most

$$
\left[-\frac{1}{\log _{10} k}\right]+1
$$

Other acceptable error estimates are

$$
\left|x_{n}-x_{*}\right| \leq k^{n} \max \left\{x_{0}-a, b-x_{0}\right\},
$$

and

$$
\left|x_{n}-x_{*}\right| \leq \frac{k^{n}}{1-k}\left|x_{1}-x_{0}\right|
$$

Function $g(x)=x^{2}+\frac{3}{16}$ has two fixed points

$$
x_{1}=\frac{1}{4} \text { and } x_{2}=\frac{3}{4} .
$$

Since $g^{\prime}\left(x_{2}\right)=2 x_{2}=\frac{3}{2}>1$, the assumption $\left|g^{\prime}(x)\right| \leq k<1$ of the fixed point theorem is not satisfied, and the theorem can not be applied for the fixed point x_{2}. Therefore, fixed point iteration is not guaranteed to converge to x_{2}.
We now show that function $g(x)$ satisfies the assumptions of the fixed point theorem for a fixed point $x_{*}=x_{1}=\frac{1}{4}$ on the interval $\left[0, \frac{3}{8}\right]$. Since $g(0)=\frac{3}{16}<\frac{3}{8}, g\left(\frac{3}{8}\right)=\frac{21}{64}<\frac{3}{8}$, and $g^{\prime}(x) \geq 0$ for $x \in\left[0, \frac{3}{8}\right]$, we have $g\left(\left[0, \frac{3}{8}\right]\right) \in\left[0, \frac{3}{8}\right]$. Function $g(x)$ is continuously differentiable on the interval $\left[0, \frac{3}{8}\right]$, and

$$
\max _{\left[0, \frac{3}{8}\right]}\left|g^{\prime}(x)\right|=\max _{\left[0, \frac{3}{8}\right]}(2 x)=(2) \frac{3}{8}=\frac{3}{4}<1 .
$$

Applying the fixed point theorem with $k=\frac{3}{4}$, conclude that fixed point iterations converge to the fixed point $x_{*}=\frac{1}{4}$ for any initial guess $x_{0} \in\left[0, \frac{3}{8}\right]$. The number of itertions to reduce the initial error by a factor of 10 is at most

$$
\left[-\frac{1}{\log _{10} k}\right]+1=\left[-\frac{1}{\log _{10} \frac{3}{4}}\right]+1=8+1=9
$$

Problem 6.

a) Describe the power method for computing the dominant eigenvalue and a corresponding eigenvector of a matrix.
b) Find the eigenvalues and eigenvectors of the matrix

$$
A=\left(\begin{array}{ll}
6 & 4 \\
4 & 6
\end{array}\right)
$$

Is the matrix semi-simple (diagonalizable)? Does it have a dominant eigenvalue?
c) Demonstrate convergence of the power method by performing four iterations on matrix A with the initial guess $v=(1,0)^{T}$.
d) Compute the relative errors of the obtained approximations using the ∞-norm.

Solution.

a) The power method iterations are formulated as follows:

$$
v_{k+1}=\frac{1}{\sigma_{k+1}} A v_{k}
$$

where the scaling factor σ_{k+1} is the entry of $A v_{k}$ with the largest magnitude.
b) Eigenvalues and the corrsponding eigenvectors of matrix A are

$$
\lambda_{1}=10, \lambda_{2}=2
$$

and

$$
v_{1}=\binom{1}{1} \text { and } v_{2}=\binom{1}{-1}
$$

Since A is 2×2, and it has two distinct eigenvalues, the matrix A has two linearly independent eigenvectors; hence, A is semi-simple. In fact, A is diagonalizable; that is, semi-simple, because it is symmetric: $A^{T}=A$. Since $\lambda_{1}>\lambda_{2}, \lambda_{1}=10$ is the dominant eigenvalue of A, and $v_{1}=(1,1)^{T}$ is a corresponding dominant eigenvector.
c) Performing iterations with a given matrix A and the initial guess v, obtain

k	σ_{k}	$\left(v_{k}\right)_{2}$
0	1	0
1	6	0.666666666666667
2	8.666666666666666	0.923076923076923
3	9.692307692307693	0.984126984126984
4	9.936507936507937	0.996805111821086

In the table, $\left(v_{k}\right)_{2}$ is the second entry of the k-approximation to a dominant eigenvector $v=(1,1)^{T}$.
d) The relative errors are

$$
\lambda_{1}: \frac{|10-9.936507936507937|}{10} \approx 0.006349
$$

and

$$
v_{1}: \frac{|1-0.996805111821086|}{1} \approx 0.003195
$$

