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ABSTRACT

Characterization of the interface between detonation product gases and am-
bient air in an explosion is a complicated task due to turbulent mixing and the in-
herently three-dimensional expansion of the interface. This study aimed to quan-
tify the evolution of the interface complexity and progression to turbulence as
a temporally-varying fractal. Laboratory and field scale experiments were con-
ducted to identify characteristics of an explosively driven gas cloud such as the
growth as a function of time and the width of the mixing region during expan-
sion. Experiments were conducted using several explosives in primarily spheri-
cal geometries.

In the laboratory-scale work, a shotgun primer was used to generate a re-
peatable explosively-driven gas cloud in varying confinement. High speed imag-
ing captured the evolution of the product gas interface, and an automated image
processing routine extracted and measured the mixing region width h. A com-
parison was made to a gas cloud radius based predictive model for the width
of the mixing region, and a new scaling factor k was used to scale the equations
for a non-zero start time. The fitting parameters c and k were found to vary
with the degree of confinement as the experimental conditions diverged from the
base assumptions of the model. No particular trends were found in the evolu-
tion of k, though for early times the geometric constraint c was seen to increase
disproportionately with k as spacing increases. The model was also applied to
mixing region growth on spherical explosive charges with known initial surface
perturbations. It was found that the width of the mixing region is predicted by
the analytical model at the initial stages of the blast, but transitions to non-linear
turbulent mixing before the shock has detached from the fireball.

In laboratory and field-scale experiments, the Hausdorff or fractal dimen-
sion of two-dimensional slices of the explosively driven gas cloud was measured
from multiple angles. Gas cloud profiles representing the contact surface were
extracted using automated image processing algorithms. The Hausdorff dimen-
sion was estimated using a box counting algorithm on the extracted contours.
Experiments were performed with charge mass variations to identify scaling for
the Hausdorff dimension, as well as other fireball characteristics such as radius.
The fractal dimension was found to not scale with shock scaling laws once the
shock has detached from the fireball. Taken as a function of mixing region width,
the fractal dimension was seen to begin increasing as the validity of the analyt-
ical models ends, indicating an increase in the non-linear turbulence that drives
complexity on the surface of the fireball.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The interface between an explosively driven gas cloud and the ambient air
behind a shock wave is a naturally complex and chaotic environment. Even in
simplified planar environments such as shock tubes, the inherent complexity of
the mixing process is a tremendous task for direct numerical simulation, and an
area of vigorous study by experimentalists, computationalists, and theorists. A
better understanding of how the mixing interfaces evolve with a scaling variable
such as explosive charge mass is critical to developing a framework for an under-
standing of the process.

The transition of an explosively driven fireball from the smooth surface of ex-
panding gas to the turbulent mixture of ambient air and cooling detonation prod-
ucts is a complicated three dimensional problem. The growth of turbulence, and
therefore mixing, on the surface of a fireball is linked to the initial conditions of
the fireball. Small initial imperfections in the surface of charges, non-uniformity
in explosive composition, and slight differences in atmospheric conditions can
impact the resultant mixing. The effort for analyzing the explosively driven mix-
ing region evolution can be approached from three principal directions: the de-
velopment of experimental diagnostics that can capture the desired quantities
consistently; the application of existing models and theories to the data to iden-
tify areas for improvement; and the development of scaling parameters and tools
to decouple the explosive mixing problem from specific circumstances and allow
it to be applied more generally. This research is motivated by these approaches
develop a scalable and dimensionless understanding of the interface evolution
process. Two metrics, the mixing region width and the fractal dimension, were
chosen to represent the interface evolution. The multi-scale nature of turbulent
mixing is conducive to developing an understanding using fractals. The mixing
width and fractal dimension can both be determined through direct imaging of
the fireball surface. This is important, as a potential application for this research
is the characterization of turbulent development from archival film of large scale
explosions.

The purpose of this research is to characterize the relationship between tur-
bulent mixing width and fractal dimension in the immediate post detonation en-
vironment. In support of that purpose, the development of diagnostic method-
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ologies for identification of both mixing width and fractal dimension was re-
quired. The characterization of this relationship is intended to provide insight
into the formation of surface instabilities on the fireball, and their growth towards
turbulence. Connecting the change in fractal dimension to the existing explosive
scaling laws is intended to give better understanding of what flow regimes can
be characterized by the fractal dimension.

1.2 Turbulence and turbulent mixing

Big whirls have little whirls
that feed off their velocity
and little whirls have lesser whirls
and so on to viscosity

Lewis Fry Richardson [1]

The term turbulence is believed to have been coined by William Thomson in 1887,
though it would not reach wide-spread adoption within the research community
for the next 15 to 20 years [2]. In fact, in the classical turbulent research done
by Osborne Reynolds, the term turbulence is not used [3]. However, nearly a
century later, the field of turbulence continues to be a topic of significant scientific
discussion. The high non-linearity of turbulent processes has long encouraged
linearization and lower order modeling to make the complicated behavior more
readily approachable for researchers and engineers alike.

Much of the study of turbulent events is the study of averages and bulk
energies. The chaotic nature of a turbulent flow inhibits direct study of specific
phenomena, and so research tools have been developed to characterize the turbu-
lence in a certain flow averaged over time, space, or both. Time averaged flows
are a common tool in computational fluid dynamics (CFD) to understand the
generalized behavior of a system without the discussion devolving into specific
cases of initial perturbation and geometry. An especially important characteristic
value for a turbulent flow is the energy dissipation rate ϵ [4]. For turbulence, it is
important to be aware of some notation. The angular brackets represent an aver-
age over the fundamental periodicity box. Vertical brackets represent the vector
magnitude. Mean energy, E, and mean enstrophy, Ω are defined as:

E ≡ ⟨1/2|v|2⟩ (1.1)

Ω ≡ ⟨1/2|ω|2⟩ (1.2)

where v is the velocity vector, and ω is the vorticity. Conservation of energy for
the fluid flow can be written as:

∂

∂t
E = 2vΩ (1.3)

∂

∂t
H = −2vHω (1.4)
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Where the mean energy dissipation ϵ is defined as:

⟨ϵ⟩ ≡ −dE
dt

(1.5)

The energy dissipation is important because it provides a diagnostic number for
the scales of turbulence in terms of the relative energy dissipation at each scale.
The energy budget is proved on the basis of incompressibility. The underly-
ing concepts addressed here are the injection of turbulent energy at large length
scales, and dissipation of energy dominant at small scales. If energy is primar-
ily being injected at large scales, and primarily being dissipated at small scales,
there must exist some mechanism for the transfer of energy from the large scales
to the small [1, 4]. Space mean measurements such as dissipation are important,
as the complexity of turbulence frequently leads researchers to address turbulent
behavior stochasticaly, despite the widely conjectured deterministic nature of the
Navier-Stokes equations [4]. By treating turbulence as a stochastic system, a re-
searcher derives certain benefits. The Ergodic theorem states that a time average
along an orbit is equivalent to ensemble average, which justifies the use of bulk
averaged terms in experimental assessments of turbulent mixing [5].

1.2.1 Early stage development of turbulent mixing

Of specific interest is how turbulence impacts the mixing of two fluids when
the interface between them becomes perturbed. The mixing width is one way
to characterize the evolution of that mixing. The importance of mixing width to
characterizing the evolution of the mixing region comes from the study of mix-
ing as the evolution of a surface perturbation, and is a common metric for the
evaluation of linearized models [6–13]. The mixing width does not fully capture
the evolution of smaller scale mixing that develop on larger length scale pertur-
bations, but does describe the early evolution of those large perturbations [14].
Bell, in a 1951 Los Alamos technical report, derived equations for the evolution
and growth of small amplitude perturbations under varying conditions and as-
sumptions [6]. His equations, developed for both cylindrical (equation 1.6) and
spherical (equation 1.7) geometries, related a perturbation size η(t) to a radius R
and a wavelength λ.

λη
R̈0

R0
+ η̈ − η̇

ρ̇

ρ
= 0 (1.6)

η
R̈0

R0
+ η̈ − η̇

(
Ṙ0

R0
+

ρ̇

ρ

)
= 0 (1.7)

Birkhoff published similar results in 1954 [15]. Of note is the assumption
by Bell of the secondary fluid having negligible density [6]. The early work was
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enhanced by Plesset, correcting an earlier error by Binnie, in a study of the sta-
bility analysis of work by G. I. Taylor [7, 10, 16]. The resulting Plesset equation
and derivation serves as a basis for much of the current analytical models for
turbulent mixing region growth in non-planar geometries.

Figure 1.1: (left) A circular interface defined by radius R sparates the regions of
density ρ1 and ρ2 and expands outward. (right) The portions of a perturbation
moving in the direction of fluid acceleration are referred to as ”peaks”, while the
“valleys” form against the direction acceleration. A perturbed surface may have
the same nominal radius r = ravg with significant variation between the radii of
valleys rmin and the radii of the peaks rmax. The difference between the peak or
valley radii and the mean is the mixing region half-width h.

Derivation of the Plesset Equation The Plesset equations assume an incom-
pressible, immiscible, non-viscous fluid in spherically symmetry [10]. A fluid of
density ρ1 in a radius R sphere is surrounded by another fluid of density ρ2, such
as the system seen in Figure 1.1. The origin of a spherical coordinate system is at
the center of a spherical interface R(t) that separates the two fluids. The velocity
potential of the interface is given by

φ =
R2Ṙ

r
(1.8)

This is a potential velocity field with radial velocity − ∂φ
∂r . Consider a perturbation

of the interface from R(t) to rs given by

rs = R + ηYn (1.9)
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where Yn is a spherical harmonic of degree n and η is the amplitude of the har-
monic and a function of time such that |η(t)| ≪ R(t), fulfilling the requirement
that the disturbance is small relative to the radius of the sphere. By neglecting
all terms in η higher than first order, the surface velocity in the radial direction u
becomes

u = Ṙ + η̇Yn (1.10)
Across the interface, velocity must be continuous. The difference between nor-
mal surface velocity and radial velocity, however, is second order in η and is
neglected. Choosing a perturbation to decrease away from the interface, the po-
tential function for the flow is

φ1 =
R2Ṙ

r
+ b1rnYn (1.11)

φ2 =
R2Ṙ

r
+ b2

Yn

rn+1 (1.12)

where b1 and b2 are constants that can be solved for by the requirement that the
radial velocity at the interface is that given by Equation 1.10:

−
(

∂φ1

∂r

)
rs

= −
(

∂φ2

∂r

)
rs

= Ṙ + η̇Yn (1.13)

φ1 =
R2Ṙ

r
− rn

nRn−1 Yn

[
η̇ + 2η

Ṙ
R

]
(1.14)

φ2 =
R2Ṙ

r
+

Rn+2

(n + 1)rn+1 Yn

[
η̇ + 2η

Ṙ
R

]
(1.15)

The Bernoulli integral is used to determine the pressure on both sides of the in-
terface p1 and p2. ∫ dp

ρ
=

∂φ

∂t
− 1

2
|∇φ|2 + u + f (t) (1.16)

p1 = P1(t) + ρ1

[(
∂φ1

∂t

)
rs

− 1/2(∇φ1)
2
rs

]
(1.17)

p2 = P2(t) + ρ2

[(
∂φ2

∂t

)
rs

− 1/2(∇φ2)
2
rs

]
(1.18)

Where P1(t) and P2(t) are spatial integration constants resulting from Equation
1.16. In Plesset’s derivation, it is noted that P2(t) is the pressure at infinity. The
components of Equations 1.17 and 1.18 are found to the first order:(

∂φ1

∂t

)
rs

=
1
R

d
dt

(
R2ṙ
)
− ηYn

R2
d
dt

(
R2Ṙ

)
− η̈

n
RYn +

n − 3
n

η̇ṘYn −
2η

n
(

R̈
)

Yn +
2ηṘ2

R
Yn (1.19)
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(
∂φ2

∂t

)
rs

=
1
R

d
dt

(
R2ṙ
)
− ηYn

R2
d
dt

(
R2Ṙ

)
+

η̈

n + 1
RYn +

n + 4
n + 1

η̇ṘYn +
2η

n + 1
(

R̈
)

Yn +
2ηṘ2

R
Yn (1.20)

(∇φ1)
2 ≈ (∇φ2)

2 ≈ Ṙ2 + 2η̇ṘYn (1.21)

The two pressures are joined by surface tension σ

p2 = p1 − σ(1/R′ + 1/R′′) (1.22)

where R′′ and R′ are principal radii of curvature of the interface. Combining and
reducing to the first order terms this becomes

p2 = p1 −
2σ

R
− (n − 1)(n + 2)

R2 σηYn (1.23)

Using Equation 1.23 to join Equations 1.17 and 1.18, plugging in values from
Equations 1.19, 1.20, and 1.21, then simplifying gives

RR̈ + 3/2Ṙ2 =
P1(t)− P2(t)− 2σ

R
ρ2 − ρ1

+ Yn

[
η̈ +

(
3Ṙ
R

)
η̇ − Aη

]
(1.24)

Grouping the terms proportional to Yn, the resulting differential equation de-
scribes the perturbation growth η(t)

η̈ + 3
Ṙ
R

η̇ − Aη = 0 (1.25)

where

A =
[n(n − 1)ρ2 − (n + 1)(n + 2)ρ1] R̈ − n(n − 1)(n + 1)(n + 2)σ/R2

R [nρ2 + (n + 1)ρ1]
(1.26)

It is worth remembering that the Plesset equations are not based in first prin-
cipals, and the mixing width equations developed using its approach are ulti-
mately models for the underlying behavior.

The Mikaelian Model The Plesset equations form the basis of the azimuthal
model developed by Mikaelian, again separately for cylindrical (equation 1.33)
and spherical (equation 1.32) geometries [8, 9]. Mikaelian restated Equation 1.25
as

∂2η

∂t2 + 3
Ṙ
R

∂η

∂t
− nA(n)

R̈
R

η = 0 (1.27)
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Where, after taking the surface tension σ to be zero,

nA(n) =
n(n − 1)ρ2 − (n + 1)(n + 2)ρ1

nρ2 + (n + 1)ρ1
(1.28)

Equation 1.27 can be written as

1
R3

[
R3 dη

dt

]
− nA(n)

˙̇R
R

η = 0 (1.29)

Again, a two fluid system is assumed, such as detonation products impinging
into air. It is then assumed that Plesset’s equation represents the growth of the
mixing region width h after taking the limit

n → ∞, η → 0,
nη

R
→ c = constant (1.30)

which yields
1

R3
d
dt

[
R3 dh

dt

]
− cAR̈ = 0 (1.31)

Where A is the Atwood number. No assumptions are placed on the history of R.
By integrating with respect to time, the mixing region thickness h(t) can be found
explicitly given a time history of the radius R(t) for spherical geometries:

h(t) = h(0) + R3
0

dh0

dt

∫ t

0

dt
R3 + cA

∫ t

0

(
1

R3

∫ t

0
R3R̈dt′

)
dt (1.32)

Figure 1.1 demonstrates the features on an evolving perturbation that are used to
identify the mixing region. Using a similar derivation, the mixing region thick-
ness for a cylindrical geometry can be shown to follow a similar form [9]:

h(t) = h(0) + R2
0

dh0

dt

∫ t

0

dt
R2 + cA

∫ t

0

(
1

R2

∫ t

0
R2R̈dt′

)
dt (1.33)

Mikaelian’s results were compared to simulations, and found to have good agree-
ment with ideal case scenarios. However, the limitations of an azimuthal only
model are significant for real world applications. Lombardini and Pullin derived
an expression for the asymptotic growth rate for the combination of axial and
azimuthal perturbations, which returns the Mikaelian equations in addition to
Richtmyer’s model for perturbation growth on a plane in the limiting cases [17].

In further analyses, Mikaelian investigated the constant acceleration Rayleigh-
Taylor instability (RTI) case and the impulsively driven Richtmyer-Meshkov in-
stablity (RMI) case and derived analytical expressions for mixing region thickness
as expressions of time. The expressions so derived only require a given Atwood
number, initial perturbation, and assumed radius history based on the chosen in-
stability. As expansions of Bell’s work, the base assumptions of irrotational flow
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and a small initial amplitude are continued. Additionally, the tuning parameter
c has been postulated to act as a geometric constant [9].

The topic of perturbation growth rate is critical to the development of a mix-
ing region, as the perturbation is the basis for the classical instabilities that drive
mixing, particularly for the RTI and RMI. Both instabilities exists on the interface
between two fluids of differing densities, and form characteristic spike and bub-
ble flow features that drive the mixing. These two instabilities share significant
features, but the differentiating factor is the driving force behind their growth.
The RTI instability occurs when a less dense fluid is accelerated into a denser
fluid [11]. The classical example is a layer of water suspended above a layer of oil,
where mixing results from the unstable equilibrium of the buoyancy forces once
a perfectly planar interface is perturbed. RMI, on the other hand, arises from an
impulsive or shock acceleration of two fluids [12]. RMI is less naturally common,
as shock acceleration of a fluid interface is relatively infrequent on Earth. How-
ever, inertial confinement fusion sees significant RMI growth in the fuel layer, as
does the study of supernova formation [18–20]. Of importance to RMI is that it is
density gradient agnostic, and will form regardless of whether or not the impul-
sive acceleration is going from a less dense to more a dense fluid, or vice versa
[21].

The dominant instability that drives mixing on the surface of a fireball is not
constant with time. After the detonation wave passes through the interface, the
surface of the rapidly expanding product gas cloud is RT unstable [22]. After the
initial expansion, the secondary shock passes through the interface, driving the
formation of RM features on the existing RT structures.

1.2.2 Other models and methods for mixing region and instability growth

The growth of RMI amplitude is the subject of experimental and theoretical
work. Richtmyer, as part of his impulse model for the instability[12], proposed a
growth rate that connected the post shock perturbation amplitude h to the initial
post shock size h+0 ,the wave number k, the change in velocity across the shock
∆u, and the post-shock Atwood number A+.

dh
dt

= k∆uA+h+0 (1.34)

This equation does not take into account any pre-shock conditions, which has
been found in experiments to not always be an accurate approach. In an early
hydrocode simulation of the instability, it was found that the fit could be im-
proved by taking the mean of the shocked and unshocked initial amplitudes h−0
and h+0 [23]. The impulsive model for RMI is only valid for when the behavior of
the interface remains approximately linear [24]. This is true for perturbations that
remain small relative to their wavelength (η(t) << λ). Some early results stud-
ied flows outside of the linear regime using linear models, and observed poor
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agreement between data and prediction. When working with very early time
growth, or with very strong shocks, use of a linearized model will likely produce
disappointing results [24].

The evolution of the interface between the explosive product gases and the
ambient air behind the shock is dominated by the development of instabilities
on the initial interface. Work on the three-dimensional instabilities is driven by
study of supernova formation and inertial confinement methods [19, 25]. As
such, the bulk of the experimental literature is focused on the implosion case,
where an external shock source collapses into a central body of different density
gas. The primary instabilities typically investigated in the context of explosively
driven events are the RTI and RMI [26]. Research on this area has made signifi-
cant use of simulation to investigate the growth rates of the instabilities, though
there have been recent advances in the analytical theory for RMI [27]. The high
computational cost of direct numerical simulation (DNS), combined with the dif-
ficulties of numerical artifacts when working with the near instantaneous dis-
continuity of a shock wave, has meant that significant amounts of computational
resources have been committed to the study of RMI and RTI [28, 29].

In an effort to improve the baseline understanding of the mechanisms behind
RMI, analytical models with modifications on existing one-dimensional models
to approximate multidimensional effects have been validated against simulation
[25]. Other one-dimensional models have been developed to study the evolution
of the shock front in shock driven multi-phase mixing, and integrated varying
temperature and velocity in the two mixing fluids [30]. Research suggests that
even one-dimensional models with components of multidimensional effects will
have significant differences from two-dimensional (2D) hydrodynamic models
[19], which is of importance to three dimensional events like explosively driven
gas clouds. The impact of those three dimensional effects were found to cause
the growth of RT instabilities on spherically expanding clouds to vary from the
classical instability when accounted for in one-dimensional models [31, 32]. The
proposed parallel between planar and spherical instability growth, linking the
volume of the perturbed fluid to the growth rate [17], has primarily been com-
pared to resolved numerical simulations of the implosion case. As model com-
plexity increases, so too does the difficulty found in applying that model to ex-
perimental data. More complicated analytical models have been developed to
segment shock driven mixing into time scales based on characteristic time scales
of differing wave number turbulent lengths scales [33]. These models begin to
bridge the gap between the impulsive linear theory of RTI and a full direct nu-
merical simulation of the instability, but are too complex for expedient analytical
manipulation. While important, this work does not negate the need for exper-
imental studies on non-planar geometries, despite the difficulties in replicating
ideal analytical and model conditions in experimental testing [34].
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1.2.3 Experimental methods

Experimental studies frequently utilize shock tubes to generate planar gas
interfaces for ease of analysis and comparison [35]. Proper shock tube design is
critical to achieve usable RTI results. Shock waves generated by a shock tube dif-
fer fundamentally from a shock wave generated by a gaseous explosive due to the
lack of a Taylor expansion wave trailing the shock in shock tube studies, which
transitions the already generated RMI to an RTI regime [24]. Figure 1.2.3 shows
a schematic wave diagram for both a shock tube and an idealized spherical deto-
nation [22]. The time period of interest in a shock tube is the time between initial
shock interaction and re-shock by the reflection of the initial shock off the end
of the tube. In a spherical detonation, the re-shock occurs when the secondary
shock wave formed from the end of the Taylor expansion wave due to the rapid
expansion of the detonation products passes through the expanding gas cloud
and interacts with the contact surface [36].

Establishing well characterized initial perturbation is also critical, and the
method of perturbation establishment is an important functional component of
shock tube design. The ability to tightly control initial surface perturbations dif-
ferentiates shock tube testing from the explosively driven interface of a product
gas cloud or “fireball”. Some experiments have been conducted attempting to
replicate the clean shock tube environment using pressurized spheres, but con-
trol over initial perturbations in these tests is limited [37].

The diagnostics applied to RMI and RTI experiments endeavor to establish
two primary components: the location and complexity of the interface, and the
necessary thermodynamic flow properties to establish the state of the system. In
shock tubes, techniques such as Planar Laser Induced Fluorescence(PLIF), two-
dimensional (2D) and three-dimensional (3D) particle image velocimetry (PIV),
and other flow seeding methods are popular, as the controlled environment of
a shock tube enables good seeding and even distribution [24]. For non-planar
testing, such as in an explosively driven gas cloud, direct imaging and refractive
imaging techniques remain popular, with recent developments in high speed to-
mography showing promise for future work [38]. The integrated nature of refrac-
tive imaging techniques does typically limit their application to bulk averaged
diagnostics.

The cascade of energy down the turbulent length scales, which can cover
numerous orders of magnitude, makes the turbulent flow an inviting area for the
application of fractal analysis [39]. Identification of traceable scalars within flows
is a continuing challenge for researchers, with many experimentalists using dye
doped flows [40], fluorescent gases [35], or just relying and simulation results
[41].
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Figure 1.2: The wave diagram of a shock tube (left) compared to a spherical explo-
sion (right) highlights the major differences between the behaviors of the shock
waves (solid black), and the contact surfaces (solid green). In a shock tube, the
studied interface (grey), is external to the shock producing gas, whereas in the
spherical explosion the region of interest is the contact surface. In the shock tube
the rarefaction waves (blue) traveling back into the driver section can also impact
late time diagnostics. The over-expansion of the gas near the center of the blast in
a spherical detonation causes the expansion waves to coalesce into a secondary
shock wave, seen here turning towards the origin.
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1.3 Fractals

Fractals provide a workable new middle ground between the excessive geo-
metric order of euclid and the geometric chaos of roughness and fragmenta-
tion.

- Benoit Mandelbrot [42]

A fractal is a shape whose features, be they roughness or splintering, do not vary
under a symmetry of dilation or contraction. The field of fractal geometry is a
relatively fresh one for the field of mathematics, formalized by B. B. Mandelbrot
in his work The Fractal Geometry of Nature [42]. While the description may seem
far distant from any description of reality, natural patterns are frequently seen
to be simply described by fractal expressions such as the appearance of broccoli,
the organization of river networks, or the dynamics of a heart beat[43–45]. The
basic concept of a mathematical fractal may be interpreted as a measure of com-
plexity, and a measure of the rate at which larger length scales devolve to and are
consumed by small scale motion.

A critical component for the use of fractals as a scientific tool is the fractal
dimension, most commonly characterized as the Hausdorff dimension DF. These
two terms will be used interchangeably here. When dimensionality is discussed,
it is typically in the form of the positive integers of topological dimension DT,
i.e., 1 dimensional model, 2 dimensional image, 3 dimensional reconstruction.
A fractal however, is best described by a dimension in the space between the
integers. If DF > DT, then by definition the set is a fractal. The Hausdorff fractal
dimension is calculated by:

DF =
ln N
ln s

(1.35)

From a generalized view, N is the number of characteristics at a certain level
of a fractal, while s is the “depth” of a fractal. More practically, N is a mea-
sure of length or size, and 1/s is the scaling ratio associated with that length.
The quintessential fractal is the Koch curve, a continuously subdividing trian-
gle that serves as a simple visual introduction to the concepts. Figure 1.3 shows
the generation of a Koch curve. This process, repeated to infinity, is the basis
of mathematical fractals. The Koch curve is a very simple fractal with a defined
mathematical formula for it’s constructions. As such, it’s fractal dimension can be
exactly calculated DKoch = ln 4

ln 3 = 1.26. Natural fractals rarely have exact mathe-
matical constructions, and so must rely on varying methods of fractal dimension
estimation.

Box counting, or the generalized dimension, estimates the fractal dimen-
sion by determining the space filling capabilities of a set [46, 47]. Box counting,
taken to the limit of box size s → 0 determines the Minkowski-Bouligand dimen-
sion, which in standard use is equivalent to the Hausdorff dimension. However,
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Figure 1.3: The first 4 steps to the generation of the Koch Curve, where r is
the refinement level, and N is the normalized length of the curve. The top row
is the basis object, in this case a flat line. The second step shows the generator
function, where a straight line is broken into 4 lines of length 1/3 of the original
line. The generator is then recursively applied to all straight lines, creating the
increasingly complex objects on lines 3 and 4. As r increases, the total length also
increases, demonstrating the property that fractals change length depending on
the precision of the tool measuring them.
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in cases where it is not equivilant to the Hausdorf dimension, the Minkowski-
Boulingand dimension obeys the strict inequality

DF ≤ DL,BC ≤ DU,BC

where DL,BC and DU,BC are the upper and lower limits of the box counting di-
mension [48]. This methodology translates well to digital images, where infor-
mation is inherently quantized along pixel divisions [49]. Efficient box counting
algorithms for digital images are available for images of many types, and fractal
dimension estimation is typically a robust component of a fractal analysis frame-
work [50].

Fractals in turbulence Fractals have been speculated to have some applica-
tion in the realm of turbulence [42]. The lack of any clear scale in a turbulent
flow encourages the postulation that the scales of turbulent eddies can be better
described using that language of fractals. Turbulent systems are stochastically
chaotic, and the fractal dimension has a history of being applied to understand
chaotic systems [47]. Attempts have been made to describe the turbulent mixing
of gases using a fractal model, and have seen some success in determining a point
of convergence for the Hausdorff dimension of a mixing layer [35, 40]. Several
studies have arrived at a values of 1.36 to 1.3 for the evolution of the isosurfaces
in the mixing region on a slice of a jet flow imaged by PLIF [35, 51]. The math-
ematical theory for 3D turbulence predicts a Hausdorff dimension or 5/2 or 8/3
for nonpersistent and antipersistent turbulence [42]. Historically many aspects
of turbulence have been approached through a fractal lens [52]. These surfaces
are difficult to measure, experimentally in a turbulent environment, and several
techniques have been developed to optically approximate them [35, 40, 53, 54].
Successful measurement of the fractal dimension of an evolving surface using
optical diagnostics has been made in a shock tube [35, 53]. Ng et. al. determined
that the interface between a block of SF6 trended towards a fractal dimension of
1.39 when driven by a shock to RMI [53]. Several studies have arrived at a value
of 4/3 for the evolution of the isosurfaces in the mixing region on a slice of the
flow imaged by PLIF [40].

Current research has attempted to address other facets of the fractal nature of
turbulent structures, such as the evolution of a turbulent mixing flow generated
via a fractally refined grid [55]. The determination of fractal dimension for a
turbulent flow is greatly dependent on the fractal dimension of the chosen scalar
metric, and is an area of continued development [40, 41, 56, 57].

For energetic and combusting flows, there is precedent for the application of
the Hausdorff dimension for the analysis of flame front growth both in classical
turbulence [57] and in analysis of gas cloud explosions [41]. Bambauer et. al. has
continued the application of fractal dimension to gas cloud explosions, working
with simulations of H2/air mixtures and measuring the Hausdorff dimension of
the flame surface to identify dependencies of the Hausdorff dimension on fuel
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air mixture [58]. The indication is that the flame front surface evolution, as rep-
resented by the Hausdorff dimension, is dependent on the energy release in the
combustion process. Recent work by Gomez et. al. studied the fractal dimen-
sion of the early time detonation products in a blast chamber, and concluded
the fractal behavior was asymptotic, converging towards a Hausdorff dimension
DF ≈ 1.9 [54]. The Hausdorff dimension extracted by Gomez et. al. is estimated
with respect to the occluded area of the product gases, not solely the boundary
of the flow. The fractal dimension of a shock accelerated particle interface was
studied by Rodriguez et. al. [59]. They found that the particle interface asymp-
totically approached a value of 1.4 as the surface instabilities drove the mixing of
the particle cloud into turbulence. Ouellet et. al. simulated a similar experimen-
tal configuration to to Rodriguez et. al., and identified a convergent Hausdorff
dimension of 1.6 for uniform particulate packing [60]. However, the Hausdorff
dimension of perturbed particle packings, where lower volume fraction particle
packings where introduced, a lower fractal dimension was observed, converging
to between 1.1 and 1.2. The previous work has emphasized the shock accelera-
tion of particles to create Richtmyer-Meshkov instabilities. Gomez et. al. began
to address the direct fractal dimension of the explosive product gases, but did not
study the effects of initial perturbations on the surface of the charges. The present
work seeks to study the fractal evolution of the detonation product gas interface
as it initially evolves in order to characterize the development of multi-scale mix-
ing during early time evolution.

1.4 Refractive imaging

Seeing is understanding

Ernest Mach

In order to capture the fluid dynamics occurring in the region around a deto-
nation, imaging techniques that can visualize the changes in air density around
an explosion are used. These refractive imaging techniques provide additional
information about the state of the flow near the expanding fireball that is not
readily recoverable by direct imaging alone. Throughout this research, tech-
niques such as schlieren photography, shadowgraphy, and background oriented
schlieren have all been used to identify features in and around the expanding
fireball.

1.4.1 Schlieren

Schlieren imaging is a refractive imaging technique that captures changes in
refractive index along the path of a light beam [61]. The basic schlieren technique
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gathers light from a point or approximately point source and directs it through
a collimating optic, typically a parabolic mirror or plano-convex lens. The col-
limated light passes through the test section before entering another optic that
refocuses the light down to a point. A cutoff, typically a razor blade, is placed
at the focal point in such a manner to obscure a portion of the point. Passing the
cutoff, the light goes into the camera. A diagram of a typical schlieren system is
seen in Figure 1.4. Schlieren images the first derivative of the refractive index, n,
which is related to the density, ρ, of a gas via the Gladstone-Dale law [62]:

n − 1
ρ

= constant (1.36)

The direction of the derivative is controlled by the orientation of the cutoff, with
the derivative imaged being perpendicular to the cutoff blade. The schlieren tech-
nique refers specifically to the use of the cutoff, so while the collimated method
is the most common, it is not the only way to construct a schlieren system.

Schlieren is frequently used for the detection and tracking of density varia-
tions in a gas, either from pressure [63] and temperature [64] variation or from
differing gas species [65]. A significant advantage of the technique is the high
light efficiency, allowing extremely fast camera shutter speeds and frame rates
while retaining sufficient illumination for imaging. To maximize the field of view
available, collimating lenses are commonly used, but the field view of an imag-
ing system is still limited by the size of the optics available [66]. Using symmetry
assumptions, quantitative information about density can be extracted from a cal-
ibrated schlieren image [67].

Figure 1.4: Line diagram of a typical lens based schlieren system. The light is
emitted at the source and refocused onto an apperature to achieve a small point
size. The light is then collimated by a lens, typically a large plano-convex achro-
mat. The collimated light passes through the test section and is refocused by
another plano-convex achromat. Light that passes through a change in refractive
index is deflected, and enters the refocusing optic at an angle. The refocused light
passes by a knife edge cut-off at the focal point, blocking light that has been de-
flected towards the knife edge. The light is then focused onto a camera sensor,
producing a schlieren image.
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Figure 1.5: Line diagram of a typical Z-type schlieren system using parabolic
mirrors. The light path is very similar to that described in Figure 1.4. The prin-
cipal differences are the collimating optics being mirrors, and the offset angle of
the light source and cameras. Because mirrors “fold” the system, short systems
can be achieved with very high focal lengths, which is critical for large diameter
optics.

1.4.2 Shadowgraphy

Shadowgraphy is a related technique that uses the same collimated light
setup, but without the cutoff [68]. Instead of imaging the first derivative of re-
fractive index, shadowgraph photography images the Laplacian for the refractive
index field [66]. The primary impact of the this difference is the removal of the
directional component from schlieren, which makes numerically reversing the
process impossible. However, because shadowgraphy shows gradients free of di-
rectional information, it detects gas boundaries regardless of orientation, which is
beneficial for imaging the complicated structures found in turbulent mixing. Fig-
ure 1.6 shows a shadowgraph system and example image. Much like schlieren,
variations of shadowgraphy exist that do not rely on collimated light. In particu-
lar, retroreflective shadowgraph utilizes a light source super-imposed on a cam-
era in conjunction with a retroreflective screen to achieve high light transmission
without large collimating optics [69].

In application, shadowgraphy is more versatile than schlieren due to the
lower difficulty in setup. As the Laplacian is not invertible, shadowgraphy is
typically a qualitative diagnostic for gas dynamics. The imaging typically thick-
ens sharp discontinuities to a greater degree than schlieren which can smudge
out fine detail.

1.4.3 Background oriented schlieren

Background oriented schlieren (BOS) is an imaging method that utilizes com-
putational post processing to identify the displacement of a background in an
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Figure 1.6: (a) A schematic of a collimated shadowgraph system. The refractive
object casts a physical shadow onto the camera sensor. (b) A representative colli-
mated shadow graph image. Note the strong demarcation of the shock location,
as well as the omni-directional detection of the shock, in contrast to the direc-
tional nature of schlieren.

image to identify changes in refractive index on a large scale. BOS has been
famously applied by NASA for capturing shock waves of supersonic planes in
flight [70]. BOS is not reliant on collimated light, so can scale indefinitely as long
as the resolution of the imaging device is sufficient [71]. The algorithms applied
to generate BOS images can come from two primary lineages, optical flow algo-
rithms and correlation based algorithms [38, 71]. For direct imaging of fireballs,
BOS is a useful technique for the timing of shock interactions with the fireball
surface.

1.5 Image processing

You don’t take a photograph, you make it.

Ansel Adams

The advent of the digital high speed camera has significantly changed the field of
high resolution photographic diagnostics. With cameras capable of frame rates
in excess of 1 million frames per second (Mfps), and sensor resolutions in the
megapixel range, the barrier to high quality scientific imaging has been signif-
icantly lowered. That being said, there are still significant challenges with the
application of high speed cameras to turbulence research.
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Figure 1.7: A line diagram of BOS. BOS scales well with increasing event size,
but is reliant on post processing to accurately identify flow features and changes
in refractive index.

1.5.1 Edge detection and image segmentation

The successful detection and characterization of edges is critical to the iden-
tification of a gas cloud interface from high speed photography. Edge detection
algorithms vary from relatively simple derivative filters to detailed algorithms.
Canny edge detection uses a series of thresholds and filters to identify and con-
nect edges of different characters and forms while rejecting background noise
and information [72]. The Canny algorithm is a 4 step process:

1. Low-pass Gaussian filtering is applied to the base image to reduce noise.
The appropriate size of the filter is context dependent. Here, x and y are the
horizontal and vertical distance respectively from the given center pixel.

G(x) =
1√

2πσ2
exp

{
−x2 + y2

2σ2

}
(1.37)

2. The image is convolved with a derivative of the Gaussian filter from step 1,
giving image gradients Ix and Iy.

3. Non-edge pixels are rejected by identifying values with very low deriva-
tives.

4. A two stage filtering process is applied to identify two categories: strong
and weak edges. Strong edges, or edges with a value greater than the pre-
determined threshold value, are always marked as edges. Weak edges are
checked for connectivity with strong edges. Connected edges are added,
and non-connected weak edges are rejected.
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The MATLAB implementation of the Canny algorithm uses two thresholds to
distinguish between the weak and strong edges. Starting with strong edges, the
weak edge result is used to establish continuous edges that exist in an image
[73]. This pairs well with schlieren imaging, as the sharp boundary between the
discontinuous densities of two mixing gases is highlighted by the derivative, cre-
ating strong edges for detection. Znamenskaya and Doroshchenko applied ma-
chine learning and neural networks to develop edge detection techniques specifi-
cally for schlieren and shadowgraphy that rely heavily on the Canny edge detec-
tion algorithm [74]. Rigby et. al. used a combination of thresholding algorithms
and Canny edge detection to identify and track the fireball from several PE-4
charges, and relied on the intense light emission of the explosive event to estab-
lish the boundaries of the fireball [75]. This combined approach is applicable for
direct imaging of explosive tests.

Other methods exist for the extraction of gaseous boundaries from schlieren
images. Lazzaro et. al. applied curvature filters as developed by Gong and
Sbalzarini to schlieren images of diesel injection plumes to achieve effective seg-
mentation of the images [76, 77]. Curvature filtering is a variational method that
achieves a similar goal as edge detection by segmenting off regions of the images
with differing properties.

1.5.2 Filtering and noise rejection

A significant portion of successful fireball segmentation and edge detection
is the rejection of background noise. The techniques discussed above commonly
detected edges not associated with the desired object or image segment. The
Gaussian filtering used in Canny suppresses some imaging noise, but is not al-
ways sufficient. Background subtraction is commonly applied to remove or re-
duce background noise and highlight regions of significant change [63, 78]. A
wide variety of background subtraction techniques exist for computer vision, but
in the context of high speed imaging tare and sequential subtraction are com-
monly used [63, 79].

Morphological image processing manipulates binary images using binary
filters to identify, isolate, and refine markers for object identification [80]. This
is commonly applied as an image segmentation technique, and can be used to
identify larger objects that may be broken up upon a more refined examination.
Recent developments use morphological operations on thresholded fireball im-
ages ot produce a best estimate fireballs for events shrouded in particulate matter
and reflections [81]. Morphological filters avoid the edge softening common in
general spatial filtering, which is important for retaining maximum detail on the
fireball contour.
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1.5.3 Fireball identification

The explosive fireball is a complex rapidly evolving environment encapsu-
lating the high temperature detonation products and their interaction and reac-
tion with the ambient environment. The distinction between fireball and non-
fireball in the detonation environment is not always consistent in literature [82–
84].

Phenomenology of fireballs A consistent definition of the fireball is important
to a meaningful diagnostic interpretation of fireball evolution. Some treatments
have used the fireball as an abstract concept, and segmented the image based
on other metrics, such as modeling results [34, 83], absorption or emission spec-
troscopy [84–86], or estimated temperature [82]. Much of the characterization of
fireball phenomenology is focused on the remote sensing aspects of fireball detec-
tion [84, 86], or developed in the discussion of nuclear weapons research [83, 87].
The temperature approach taken by Brode in numerical models and Slaughter
using image analysis has a strong basis in the physical event, but still decouples
the fireball from the detonation product gases, a problem for implementation on
conventional explosives where product gases are principal driving factor in ex-
pansion [22, 82, 83].

Works studying the surface mixing of high explosive fireballs have histori-
cally used either simulation results identifying product gas location [34, 88], or
visual indicators of combustion or gas species variation [34, 37, 75]. Others have
used particulate matter resultant from the detonation process in conjunction with
particle image velocimetery to attempt a velocity based fireball segmentation[54]
or to identify the product gas state by soot location estimation [89]. The lack of
a consistent fireball definition is product of the difficulty in unifying the proper-
ties diagnostics can readily detect such as light intensity, emission or absorption
wavelength is representative of the different goals of the explosive researchers.

Imaging detection of fireballs Imaging based methods identify a combination
of the principal fireball components. The use of high intensity pixels to identify
the boundary of the fireball is in line with best practice in the literature [75, 79].
The fireball is optically distinguished by the high and low intensity regions cor-
responding to luminescent and sooty areas respectively on the surface of the fire-
ball. In early time evolution, the fireball has not cooled, and imaging is domi-
nated by high brightness [79, 83]. It identifies the region of high temperature gas
such that the optical depth of the fireball is great enough to present as an opaque
surface to a camera [81]. Late time exact identification of the fireball is optically
difficult due to the combination of high contrast areas of combustion with low
contrast soot and particulate clouds [81].
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1.6 Scaling

In the study of physical phenomena it is often advantageous to connect the
behavior of small events to bigger ones, and vise versa. These connections are
often achieved through the development of scaling laws, or non-dimensional re-
lationships between critical characteristics of an event. Scaling criteria are used
extensively in fluid dynamics, from aerodynamics to intense flood models [90].
The study of explosive effects has a long history of developing and applying scal-
ing laws.

1.6.1 Dimensional analysis and nondimensionalization

Dimensional analysis is a frequent tool for the derivation of scaling laws. It
is build upon the assertion that the behavior of the physical world should not
depend upon arbitrary units, and therefore the functions that express that be-
havior should be functions of fundamental properties [91]. The methodology for
building nondimensional terms is formalized in the Buckingham-Pi theorem [92],
though the concept was not new, having previously been used in the identifica-
tion of flow stability criteria by Lord Rayleigh [11]. The basic concept is to take a
census of critical variables for the problem at hand, and to reduce those variables
in to non-dimensional Π terms in such a way as to reduce the total number of
controlling variables of a function.

1.6.2 Scaling of explosive behavior

It is important to understand the contextual background of scaling in en-
ergetics to justify the development of a scaling law for the gas cloud evolution.
Historically, dimensional analysis and similarity solutions have been applied to
develop models linking the evolution of Mach-radius curves, times of arrival,
and delivered shock impulse. The most famous similarity solution is Taylor’s
solution for the blast wave from very large explosions [93].

For an explosive event, the relationship between atmospheric conditions,
charge weight, and external geometry are significant factors for the evolution
of explosive effects such as the shock wave. Normalizing the initial conditions
of an explosion so that its effects can be predicted based on results from other
explosive tests is central to explosive engineering doctrine. Early work includes
the foundational Sachs scaling, which has three primary components, scaled dis-
tance, scaled time, and scaled impulse [94]. For explosions in free air, scaled
distance can be recovered from the assumption that the intensity of a shock wave
will be related to the cube root of the energy release scaled by the density of the
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atmosphere at which the explosion takes place [95]. The concept that shock inten-
sity is a functional form of the cube root of a relationship between energy release
W and atmospheric density ρ give the most basic distance scaling,

Z =
rρ1/3

W1/3

where Z is the scaled distance equivalent to the actual distance r. Applications of
this scaling frequently express atmospheric density and explosive energy release
in terms of a ratio to a reference value, ρ0 and W0 respectively,

Z =
(ρ/ρ0)

1/3 · r
(W/W0)1/3 (1.38)

An important consideration for utilizing scaled distance is the impact of the ra-
tio between the pre-detonation explosive radius and the shock wave radius. For
nuclear explosions, the charge radius is effectively zero, whereas two different
explosive compositions might have radically different densities and therefore
charge radii. Equations similar to Equation 1.38 can be made for scaled time.
Shock arrival time ta can be computed as a function of Mach number M and local
speed of sound C.

ta =
1
C

∫ r

0

dr
M

Mach number is a function of shock radius r. Substituting the scaled distance Z in
for r time of arrival equation, and dividing both sides by a reference atmospheric
speed of sound C0,

ta(ρ/ρ0)
1/3(C/C0)

(W/W0)1/3 =
1

C0

∫ Z

0

dZ
M

It is clear that Equation 1.6.2 is of the same form as the time of arrival equation
for any scaled radius Z, so scaled time may be writtten as,

τ = t
(ρ/ρ0)

1/3(C/C0)

(W/W0)1/3 (1.39)

The simplicity of this scaling has allowed it to stand the test of time with rel-
atively minor adjustment. Wei and Hargather summarize the history, with the
major adjustments begin in the choice of new repeating variable for the dimen-
sional analysis argument. The Wei-Hargather new scaling uses control parame-
ters of explosive energy EHE, fluid density ρ0, speed of sound C0, radius R, and t
[96]. With repeating variables EHE, ρ0, C0, they arrive at Equation 1.40 for scaled
distance:

R∗ =
RP1/3

0

m1/3
HE

γ1/3

e1/3
HE

(1.40)
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The time variable also scales with explosive energy:

t∗ =
tC0

(EHE/(ρ0C2
0))

1/3
(1.41)

At early times, the shock wave remains attached to the gas cloud, but as
the energy driving the rapid gas expansion is expended, the gas cloud separates
from the shock wave. The air which the gas cloud expands into has been first
processed by the shock so the ambient conditions governing its evolution are not
the same conditions as the shock wave is traveling through. There is currently a
gap in the understand of the explosive event when it comes to the scaling of the
fireball after the separation from the shock wave.

Historically, the evaluation of fireball size was largely empirical, with ap-
proximate equations given by Glasstone for the radius of a nuclear fireball in free
air,

R f ireball = 90W0.4

where radius R is in feet and weapon yield W is in Kilotons TNT equivalent [97].
Glasstone also references an approximate radius for shock detachment from the
fireball,

Rbreakaway = 110W0.4

again using feet and Kilotons TNT [97]. Of note for these equations is the lack
of time dependence, as the expectation was these equations would be applied to
the late time fireball, after the majority of its expansion. Recent work has built
on the early work of Sedov to establish a direct scaling of the turbulent combus-
tion fields, with validation against simulation [34]. It found that all aspects of
the fireball scale with a cube root scaling law. Important for the present work is
the functional scaling of the fireball radius as a function of the scaled time and
characteristic length scale R0. The turbulent combustion of the fireball, as iden-
tified by RMS velocity fluctuations, also scaled with respect to R0. However, it
is directly noted that certain aspects of real fireballs, such as mists and particles,
deviate from the scaling found through simulation.

1.6.3 Scaling of surface instabilities and mixing

In research on mixing, characteristic time scales have been proposed for dif-
ferent growth regimes. Scaling attempts for this region have tended to build the
scaling variables around the wave number and amplitude of the initial pertur-
bation in conjunction with a characteristic velocity to arrive at a scaled time. By
basing a scaling in the Richtmyer implusive model as seen in Equation 1.34, Mc-
Farland arrived at a scaled time of,

τ = kḣ0(t − t∗) (1.42)
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where
ḣ0 = kh′0A′∆u (1.43)

and t∗ is an offset time defined by the amount of time taken for a shock of velocity
U to cross the interface at an angle θ[98]:

t∗ =
λ

2U tan θ
(1.44)

The reported effectiveness of this scaling is marginal beyond low values for τ,
highlighting multi-timescale interactions of even relatively simple shock driven
mixing. A characteristic timescale has been proposed for the early development
of RMI,

τ =
1
2k

(
1 − A∗

US2

+
1 + A+

(−US1)

)
(1.45)

where A+ and A− are the pre and post shock Atwood numbers, Us1 and Us2 are
shock velocities from the transmitted and reflected shock respectively, and k is the
perturbation wave number[99]. Scalings for instability growth are predominately
developed in the context of a shock tube experiments, and have limited validation
against perturbation growth in spherical geometries. Additionally, much of the
experimental validation of these models occurs at relatively low mach numbers,
not the relatively high Mach number environment encountered in a detonation
environment [98, 100].

1.7 Research objectives

Mixing on the surface of an explosively driven fireball is important for post
detonation fluid-dynamic models and understanding the expansion of product
gases. The mixing width of an evolving contact surface is representative of the
evolution of the driving instabilities. The evolution of the mixing width has been
analytically characterized, and can be measured optically. The fractal dimension
has been applied to the study of high speed turbulent mixing in shock tubes and
at a small scale for explosive characterization. The fractal dimension represents
the development of multiple length scales that are characteristic to the evolu-
tion of fully developed turbulence. The nexus of these is the foundation for the
present research.

The purpose of this research is to characterize the relationship between tur-
bulent mixing width and fractal dimension in the immediate post detonation en-
vironment. Analytical models and experimental studies are utilized to analyze
the growth of mixing on the surface of early time fireballs from varied high ex-
plosive charges. The characterization of this relationship is intended to provide
insight into the formation of surface instabilities on the fireball, and their growth
towards turbulence. This research will connect the change in fractal dimension
to the existing explosive scaling laws to give better understanding of what flow
regimes can be fractally characterized. The answers to three questions form the
core of this effort:
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• How well do existing analytical models for the growth of the mixing width
in high explosives represent the detonation product gas expansion for real
explosives?

• What is the utility of shock focused non-dimensionalizations and scaling
criteria when applied to non-shock aspects of the fireball process?

• Does the fractal dimension of a fireball contour connect to the evolution of
surface mixing?

The hypothesis here is that the evolution of mixing on the surface of an explo-
sively driven fireball is related to the variation in the fractal dimension of that
surface, as imaged by the projected contour of that fireball.
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CHAPTER 2

EXPERIMENTAL CONFIGURATIONS

Four test series were used in this research. The study of variably confined
explosive product gases utilized shotgun primers to develop methodologies for
the identification of the mixing region width. A test series previously conducted
at Eglin Air Force Base (AFB) was used to determine the consistency of the frac-
tal measurement with multiple camera views on a single explosive event. Small
scale tests were conducted using single grams of explosive material in a colli-
mated imaging system to study fireball segmentation through the refractive dif-
ferences between explosive products and air. A final test series was conducted
using two masses of charges with dominant surface perturbations.

Each series is broken down into four sections. First, the characteristics of
the explosive charges used are described, such as material and explosive energy.
Second, the testing apparatus is described, including physical layout of explo-
sive charges, support structures, and any confining geometry. This section also
includes discussion of number of repetitions. Third, the imaging diagnostics are
described, including any camera settings, external illumination, or supporting
optics. Finally, the image processing used to extract the fireball profile is de-
tailed.

2.1 Variable confinement of explosive gases

Shotgun primers were used to produce a repeatable point source explosively
driven gas cloud [101]. The primers were fired into a semi-confined region en-
closed on two sides with acrylic panels. Schlieren imaging was used to capture
the expansion of the gas cloud. An automated image processing method, vali-
dated against manual tracking, extracted the mixing region width as a function
of time in addition to time resolved gas cloud radius data.

2.1.1 Explosives used

Winchester 209 shotgun primers were initiated using a pneumatic cylinder
and vented into a confined gap between two parallel acrylic plates. The shotgun
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primer contained approximately 50 mg of explosive material consisting of 45%
lead styphnate, 37% barium nitrate, and 18% antimony sulfide by weight. The
primers are approximately cylindrical, with a diameter of 6.4mm and a height of
7.8mm. Upon initiation the primers vent the produced gases along the axis of
the primer through a hole with a diameter of 2.4mm. The exit diameter is used
throughout the primer analysis as the effective charge diameter (CD) for scaling.

2.1.2 Experimental Apparatus

Figure 2.1: A Winchester 209 shotgun primer. The vent hole is the the white
circular region on top of the primer.

The shotgun primers vented explosive product gases through a 2.4 mm-
diameter hole on the end of the cylinder. An example shotgun primer is shown
in Figure 2.1. The primer was retained in a test fixture that directed the venting
gases into a confined volume between two acrylic plates, as shown in Figure 2.2.
The test fixture directed the axis of the explosion into the acrylic plates, forming
a uniform expansion radially away from the primer axis. The separation of the
plates was varied to control the degree of three-dimensionality of the expanding
gas front. The spacing between the acrylic plates was set by 3D-printed spacers at
increments of 1, 2, 5, 10, and 15 charge diameters, 2.4 mm, 4.8 mm, 11.9 mm, 23.8
mm, and 35.7 mm, respectively. An unconfined configuration removed the lower
acrylic plate, allowing free expansion of the gases along the axis of the primer.
The high confinement cases are representative of the cylindrical case. As con-
finement is reduced, the flow becomes more three-dimensional and ultimately
approximates a spherical expansion, as shown schematically in Figure 2.3.

The primers were initiated by a pneumatically driven firing pin actuated by
a solenoid valve connected to the camera trigger circuit. The pneumatic cylinder
was supplied by a cylinder of dry air regulated to 1034 kPa. The delay time from
triggering to first visible gas in the test section was between 10 ms and 20 ms.
The firing circuit is shown in Figure 2.4.
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Figure 2.2: (a) Cross sectional diagram of the shotgun primer test section. The
shotgun primer drives gas into the expansion volume between the two acrylic
plates. (b) The imaging field of view through the top of the acrylic. The radial
streaks used for locating the leading and trailing shocks are shown schematically.

2.1.3 Imaging

A lens type, parallel light schlieren system was used to image the explosive
events. To allow the test section to be oriented horizontally, the collimated light
was passed through two turning mirrors in a periscope configuration, as shown
in Figure 2.4. Images were captured on a Photron SA-X2 high speed camera at
200,000 frames per second (fps) with a resolution of 256x152 pixels. The camera
settings were chosen to maximize frame rate while retaining an effective spatial
resolution of less than 1 mm/px on the radius of the gas cloud. The minimum
time between the gas cloud exiting the primer gun and exiting the field of view
was approximately 150 µs. At 200 kfps, there were 30 event frames for the fastest
event, which was considered satisfactory for the determination of an acceleration
profile. The camera was exposed using a 10 ns pulsed SI-LUX spoiled coherence
laser illumination at 640 nm wavelength. The schlieren imaging light was passed
through a 640 nm band-pass filter before passing the knife edge cut-off. Refrac-
tive imaging was used to identify the interface between the explosive products
and ambient air by the strong density gradient between the two species. Figure
2.5 shows a representative time series of images from the shotgun primer expan-
sion. The gray semi-circle at the point of origin is the imaging axis being occluded
by the shadow of the primer gun, which is 28.8 mm in diameter.

2.1.4 Image Processing

Two imaging processing techniques were used for this work: an automated
technique based on edge detection and morphological processing and a manual
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Figure 2.3: The shotgun primer explosive products were driven into the expan-
sion volume between two acrylic plates. In (a) the high confinement configura-
tion, the expanding products have an approximately cylindrical expansion. As
the plates were separated, (b) the shape of the explosive product gas interface be-
gan to transition from a cylinder to a (c) hemispherical cloud once the opposing
plate was fully removed.
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Figure 2.4: (a) Schematic diagram and (b) labeled image of the testing setup.
Light passing through the collimating lens (1), was turned 90 degrees by a first
surface turning mirror (2), and passed through the acrylic test section(3). It was
then turned 90 degree by a second turning mirror (5), and focused onto a knife
edge by another collimating lens (5).
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Figure 2.5: Schlieren image sequence of the product gas cloud in the two charge
diameter case evolving from (a) the initial stages, where the shock and product
gas clouds are visually indistinct and partially occluded by the primer gun to (b)
a developing boundary with discernible peaks and valleys. The close proximity
of the shock during this time differentiates it from the (c) mid-time, where the
shock has fully separated from the gas cloud, and significant gas front evolution
has occurred. (d) The gas cloud continues to expand and eventually passes out
of frame.
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peak and valley tracking process. The manual tracking was used as a baseline
measurement for the automated technique.

Manual tracking of the shotgun primer mixing region width was performed
by two individuals to compare to the automated extraction. The individuals were
trained in the definition and appearance of “peaks” and “valleys” in turbulent
mixing, then instructed to locate the “peaks” and “valleys” of the expanding
product gas cloud in each image. No fixed number of points was prescribed
for each image, and individual discretion was applied to determine the extent of
the gas clouds. The product gas cloud was tracked from the first frame it became
distinct from the shock wave until either reshock off the testing apparatus or exit
of the product gas cloud from the frame. The manual tracking data was found to
be consistent with the automated techniques for tracking.

An automated method of thresholding and edge detection was applied to the
primer product gas cloud images to identify the boundaries of the mixing region
in the flow. The original images Ibase are processed in MATLAB. First, a reference
image Ire f is subtracted from each image in the set to regularize the background
and create the set of images Isub. For each time step, the previous image in Isub
is subtracted from the current image, creating the difference image Idi f . The im-
age Idi f is added to Isub to form IHL, highlighting areas of change between the
images, such as the mixing region. A Canny edge detection is then applied and a
morphological close operation is performed to connect nearest neighbor pixels in
the mixing region. The closed image Iclosed is then eroded by a larger disk struc-
tural element to remove noise and weak waves behind the shock front, producing
Ierode. A morphological reconstruction Irecon is created, using Ierode as the marker
and Iclosed as the mask image. The edge binary image Irecon is taken to represent
the boundary of the mixing region.

Isub = Ibase − Ire f (2.1)

Idi f = Isub,n − Isub,n−1 (2.2)

IHL = Isub + Idi f (2.3)

To differentiate the front of the mixing region from the back, rays are traced out
from the explosion center, and the first intersection with the gas cloud edge is
marked as the “valley”, or back of the mixing region. The intersection furthest
from the center is taken as the “peak” or front of the mixing interface. Figure
2.6 shows the process, along with the end result. All distances are measured
as a radius from the center axis of the shotgun primer. The bulk radius for the
expanding gas cloud is taken as the average radius across the region of interest.
The region of interest is the 90◦ arc centered at the primer and swept from −45◦
off vertical to 45◦ off vertical, measured clockwise.
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Figure 2.6: Processing flow for morphological thresholding method, exempli-
fied on the 1 CD case. The (a) original highlighted image IHL was first processed
with (b) a Canny edge detection algorithm. (c) The detected edges were morpho-
logically opened and closed to merge 8-neighborhood adjacent boundary pixels,
making Irecon. (d) The furthest extent radially from the center of the explosion
was extracted, and treated as the beginning of the mixing interface.

Figure 2.7: The mixing region width is typically measured from a center line
of the interface, with peak and valley distances measured from that radius. This
image is from the two charge diameter separation case and highlights the average
location (black line), the bottom of the valleys (innermost dashed line) and top of
the peaks (outermost dashed line).
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Table 2.1: Camera settings for the 1.32 kg PBXN-113 tests. Angle is clockwise
relative to the 0◦ camera.

Camera Frame Rate (fps) Resolution (pixels) Angle (degrees)
Phantom v1212 50000 512x320 0
Phantom v1212 50000 512x368 45
Phantom v611 50000 304x216 60
Phantom v711 50000 400x216 299
Phantom v711 50000 384x304 315

2.2 Multi-camera imaging of an explosive event

To assess the validity of the symmetry assumptions for fractal dimension
analysis, a test series with multiple camera views was required. A test series con-
ducted at the Eglin Air Force Base Advanced Warhead Experimentation Facility
(AWEF) satisfied this requirement. This test series was from a study of shock in-
teractions, and reshock of the gas cloud was unavoidable [102]. The primary use
of the Eglin data was analytical method development and initial fractal dimen-
sion extraction considerations.

2.2.1 Explosives used

The tests conducted at Eglin Air Force Base used PBXN-113, a plastic bonded
explosive with an energetic makeup of 45% 1,3,4,5-Tetranitro-1,3,5,7-tetrazocane
(HMX), 20% hydroxy-terminated polybutadiene (HTPB) binder and 35% Alu-
minum by weight [103]. For scaling purposes, PBXN-113 is estimated to have
a heat of detonation of 2.76 MJ/kg. The charges has a diameter of 58.3 mm.
Each charge was initiated with a RP-1 detonator and small PBXN-5 booster [102].
Testing at Eglin AFB consisted of 1.32 kg spherical charges suspended above a
reflection platform.

2.2.2 Experimental Apparatus

The PBXN-113 tests were conducted with multiple cameras arrayed in an arc
around the explosive event to capture as much three dimensional information as
possible. Analysis of the multiple camera views was used to justify the symmetry
arguments for the three-dimensional extrapolation of fractal dimension. Table 2.1
lists the camera setups for each testing series. Charges were suspended 1160 mm
above the reflecting plate.
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Figure 2.8: Layout of cameras for the PBXN-113 test series. Camera angles are
referenced from the center camera clockwise.

2.2.3 Imaging

During testing, five high speed cameras were arrayed in an arc around the
event. These tests captured early time gas cloud development, including signifi-
cant impact from reflected ground shock with the fireball. The center camera used
retroreflective shadowgraphy, the other cameras were set up for direct imaging of
the explosion. Figure 2.8 shows the layout of the cameras, and Figure 2.9 shows
representative images from each camera.

2.2.4 Image processing

For the kilogram scale tests using PBXN-113, image processing was simpli-
fied by the high contrast between the light production of the high temperature
fireball and the dark background. The base image I was binarized directly using
Otsu’s method to get Ibinary. To account for dark spots on the fireball surface, a
morphological fill operation was used to get I f illed. To reduce noise, the bina-
rized fireball was morphologically reconstructed using the charge center as the
marker for reconstruction, producing Irecon. The reconstruction step was limited
to 4-connectivity to limit the detection of bright surface reflections immediately
adjacent to, but not part of, the fireball. The MATLAB edge function extracts the
boundary of the binarized fireball, getting Iout.

2.3 Large scale schlieren imaging of small charges

Tests were conducted to evaluate the identification of detonation products,
here representative of the explosive fireball, by using schlieren imaging to iden-
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Figure 2.9: A representative image set from the PBXN-113 tests demonstrating
the high contrast fireball images. The five available camera views cover a total
angle of 122 degrees. These images are at t=1.42 ms from initiation.

tify regions of significant change in refractive index. Full field imaging of the
explosive event was achieved using 1 m diameter mirrors in a modified z-type
setup. A variety of explosive materials were tested, with Primasheet providing
the clearest fireball. The fireball contour was extracted from images and used to
calculate fractal evolution.

2.3.1 Explosives used

Gram scale charges were made of a variety of explosives, including pen-
taerythritol tetranitrate (PETN), 1,3,5-trinitroperhydro-1,3,5-triazine (RDX), and
Ensign-Bickford Primasheet 2000 (88.2% RDX by weight) , also known as de-
tasheet, to explore the impact different explosive formulations have on ease of
image processing. PETN has a heat of detonation of 6.32 MJ/kg, RDX has a heat
of detonation of 6.19 MJ/kg, and Primasheet 2000 has an estimated heat of deto-
nation of 5.45 MJ/kg[104]. Charges were constructed by pressing the explosives
into an approximately spherical pellet and inserting either a Teledyne RISI RP-2
exploding bridgewire (EBW) detonator containing 32 mg of PETN and 18 mg of
RDX and binder or a Teledyne RISI RP-3 EBW detonator containing 27 mg PETN
[105]. Schematic drawings of the pellet can be found in Appendix A. PETN and
RDX experienced issues with pressing consistency and mechanically failing pel-
lets. The surface of the Detasheet charges had more visible imperfections and
surface artifacts, but the produced gas clouds do not seem to be adversely im-
pacted by the initial surface geometry. Pellets of all four materials can be seen in
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Figure 2.10. The RDX and PETN pellets were a pressed powder with no binding
agent, while the Primasheet charges were formed with hand pressure in the same
dies. The RDX and PETN pellets were mechanically fragile, and charge assembly
was difficult without damaging or destroying the pellets.

Figure 2.10: The three different explosives used for 1 g charges. The pressed
powder charges had good surface finish, but suffered mechanical failure more
frequently compared to the charges formed from plasticized explosives. The scale
for the PETN charge is in inches, the scale for the RDX and Primasheet charges is
in mm.
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2.3.2 Experimental apparatus

Gram scale experiments were performed at New Mexico Tech in the Ballistic
Sciences Laboratory (BSL) located in the Energetic Materials Research and Test-
ing Center (EMRTC) field lab. The experiments used a gantry system to suspend
the charges to ensure the gas cloud would not experience reshock from a ground
reflection until the experiment had ended. The pellet geometry is approximately
spherical, but has a flat walled shoulder for ease of pressing and to mitigate the
risk of explosive pellets becoming stuck in pressing dies. Detonators were used
to initiate the explosive from approximately the center of the spherical shape.
Charges were oriented so that the bottom of the detonator was facing perpendic-
ular to the optical axis. This limited asymmetry effects due to both the bottom
of the detonator and the shoulder of the pressed pellet. Figure 2.11 shows a one-
gram charge hanging from the gantry in position to be fired. The long axis of
symmetry for the detonator was aligned with the optical axis of the 1 m schlieren
system in order to present the most symmetrical fireball to the camera.

Figure 2.11: (a) A 1 gram charge of Primasheet 2000 hanging from the explosive
gantry. The charge (b) was oriented to align the axis of symmetry of the detonator,
shown here as a dashed black line, with the optical axis of the 1 m schlieren
system.

2.3.3 Imaging

The gram scale tests used two schlieren imaging systems as shown in Figure
2.12; a standard z-type with 300 mm field of view and a modified double-pass
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folded z-type with 1 m mirrors. The modified z-type system is necessary due to
availability of 1 m optics, limiting the setup to a single flat mirror and a single
parabolic mirror at that size. The system is designed using WinLens to limit the
coma and aspheric distortion in the image by turning the image using flat mir-
rors [106]. The imaging systems both used Shimadzu HPV-X2 ultra high speed
cameras, operating at 100 kfps and 500 kfps, respectively. The HPV-X2 has an
imaging resolution of 400 x 250 pixels, and captures 128 images per test. The 1
m system was illuminated using a SI-LUX640 spoiled coherence pulsed imaging
laser with 10 ns pulse width. The optical train for the laser system included a 640
nm bandpass filter and neutral density filter to reduce the effects of direct illu-
mination. The 300 mm system was illuminated using a SugarCUBE Ultra white
light illumination system, and relied on the 200 ns shutter speed of the camera
for exposure control. No neutral density filters were used with the SugarCUBE.
The 300 mm system used a -1 m focal length meniscus lens to bring the center of
the test section into sharp focus as described by Torres et. al. [107].

Figure 2.12: A schematic of the double-pass schlieren system used to image the
gram scale explosive charges. The primary system using the 1 m mirrors has a
75 mm hole in the primary optics. An effort was made to align the flat turning
mirror with the optics center hole to minimize the impact on the overall image.
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2.3.4 Image processing

The image processing flow for the gram scale charge data is similar to the
process developed for the primer analysis. A graphical outline of the process-
ing is shown in Figure 2.13. A baseline cold image Icold is created from the first
image in the data set. Two masks are created: a mask identifying the center of
the explosion Icenter, and a circular mask identifying the boundary of the mirrors
in the image Imirror. First, the target image Ihot is filtered with a Gaussian filter
to make Igauss. Igauss is then binarized and cropped using Imirror. Final noise is
rejected by morphologically reconstructing only the gas cloud using Icenter as the
marker, forming Icloud. Using Icloud as a masked, an edge detection is performed
on the gas cloud, making IcloudEdge. For all images beyond Icold, Icold,cloudEdge is
subtracted from IcloudEdge to remove static elements of the image such as the turn-
ing mirror stand. The output image Iout is processed to determine the fractal
dimension.

Figure 2.13: The image processing for edge extraction begins with (a) Ihot which
was is processed with a Gaussian filter to make (b) Igauss. Morphological oper-
ations are conducted to identify the (c) gas cloud Icloud. A final edge detection
finds the (d) gas cloud interface IcloudEdge.
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2.4 Field scale perturbed sphere test cases

Explosive tests were conducted using C4 spheres with known surface pertur-
bations to identify changes in early time mixing evolution. Events were captured
by three cameras recorded at different frame rates from the same position rela-
tive to the detonation. The fireball contour was extracted and the mixing region
calculated for all cameras.

2.4.1 Explosives used

Tests conducted at EMRTC used composition C-4 (C4) hand tamped to a
density of 1.5 g/cc into 3D printed spherical molds. The density of 1.5 g/cc is
considered normal for hand packed C4 charges [108]. C4 is 91% RDX, 2.1% Poly-
isobutylene, 1.6% Motor Oil, and 3.5% di(2 ethlhexyl) sebacate by weight [104].
C4 has a heat of detonation of 5.86 MJ/kg [104].

2.4.2 Experimental apparatus

Twenty two C-4 charges were detonated in free air at the New Mexico Tech
(NMT) Energetic Materials Research and Testing Center (EMRTC). Charges were
suspended 2.5 m off the ground to delay the arrival of the reflected shock wave
from the ground. Three high speed cameras imaged the detonation and subse-
quent fireball expansion. Spherical explosive charges were molded out of C4 with

Figure 2.14: The 3D printed molds for (a) the 105 g, f = 20 charge and the (b)
880 g, f = 10 charge. The white substance on the molds is residual mold release.

smooth and sinusoidally perturbed surfaces using 3D printed negative molds
with the desired perturbations. As shown in Figure 2.14, the molds consisted of 6
interlocking pieces externally clamped around the charge. The radius of the non-
smooth charges was perturbed in the azimuthal direction to generate a known
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Table 2.2: Six different configurations of perturbed spheres were tested. The f = 0
case is a baseline smooth sphere with no artificially dominant surface perturba-
tions.

Charge mass f k Repetitions
105 g 0 N/A 4
105 g 10 785.4 rad/m 4
105 g 20 1574 rad/m 4
880 g 0 N/A 4
880 g 10 384.6 rad/m 3
880 g 20 769.2 rad/m 3

initial gas cloud interface variation. The profile of the perturbed spheres was
defined by

r(ϕ) = R + sin( f · ϕ) (2.4)

where r is the charge radius at a given azimuthal angle ϕ. R is the radius of the
unperturbed sphere, and f is the number of complete cycles per hemisphere. The
radial wavenumber k of the charges is defined as:

k =
2π

f /(πR)
(2.5)

For physical scaling purposes, f was kept at 10 and 20 for both the small and large
charges. Table 2.2 summarizes the tested configurations in terms of wavenumber.
Two masses were tested, 105 g charges with a base radius R = 25.4 mm, and 880 g
charges with base radius R = 50.4 mm. Figure 2.16 shows the 6 charge config-
urations. Charge mass of the perturbed spheres compared to the smooth ones
varied less than 1.8% of the total mass. The greatest variation was with the nom-
inal 105 g, f = 10 charge, which had a mass of 106.9 g. The number of waves per
revolution was kept constant, as well as initial perturbation amplitude. Ampli-
tudes and frequencies were chosen to maintain an order of magnitude difference
between the spatial resolution of the printed molds ( 0.1mm) and the spatial char-
acteristics of the perturbations.

To suspend the 880 g charges without external support, a thin 0.8 mm acrylic
plate of diameter 25 mm was embedded approximately 10 mm below the det-
onator well to attach the suspending cord. Charges were initiated using RP-83
detonators which were inserted from the top and embedded up to the center
plane of the spheres, or a depth of 25.4 mm for the 105 g charges and 50.4 mm for
880 g charges.

Charges were suspended 2.5 m above the ground using 22.7-kg-test fishing
line and a gantry as shown in Figure 2.16. This was done to delay the influence of
any ground reflections until after the data collection period had elapsed. Charges
were oriented as best as possible to align the axis of symmetry of the charge with
the imaging plane of the cameras, or normal to the ground plane.
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Figure 2.15: Six variations of charges were constructed across 2 masses and 3
perturbations. The nominal radius for the perturbed and non-perturbed charges
remained the same. All charges were center detonated with the detonator enter-
ing through the top of the charge. The 880 g charges use a plastic support, 10 mm
below the end of the detonator well, embedded in the explosive during molding
to take the weight of hanging the charge off the detonator cables.
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Figure 2.16: The gantry used to suspend the charges consisted of (a) 2 vertical
posts 5 m in height separated by 10 m. (b) A stadia board was used to calibrate
all cameras for each test. The (c) explosive charges were suspended at a height
of 2.5 m from the ground by (d) line strung between the two uprights, while
(e) the cabling for the RP-83 EBW detonator was strung off to the side to avoid
interference with the perturbed surface.

2.4.3 Imaging

Three cameras were used to capture the event. Two Shimadzu HPV-X2 cam-
eras, camera 1 and camera 2, were used for primary data collection. One Photron
Nova S-16, camera 3, was used to maintain a long temporal record of the event.
The two primary diagnostic cameras had resolutions of 400 pixels x 250 pixels
and were run at 1,000,000 fps and 400,000 fps for the 105 g cases, and 800,000 fps
and 200,000 fps for the 880 g cases, respectively. Both camera 1 and camera 2 are
limited to 128 frames, resulting in a record time of 128 µs/320 µs for the 105 g
charges and 160 µs/640 µs for the 880 g charges. Camera 3 recorded at 50,000 fps
with a resolution of 512 pixels x 512 pixels, and collected data for 10 ms. The pri-
mary shock reflects off the ground at 4 ms, well after cameras 1 and 2 were done
recording. The cameras were co-located 35 m from the charge. All cameras were
calibrated using a stadia board at the imaging plane. The stadia board was a 1524
mm x 1219.2 mm checkerboard with alternating black and white 127-mm-wide
squares, and can be seen in Figure 2.16.

2.4.4 Image processing

Images were processed to extract the most accurate representation of the gas
cloud interface. Images from camera 1 and camera 2 were binarized to isolate the
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Figure 2.17: (a) An original image is first (b) binarized to highlight the still bright
fireball. (c) A morphological filling operation is used to remove internal holes in
the binarized image, and (d) the edge of the fireball region is extracted. (e) A final
extracted edge is overlaid on the original image to verify the extraction.

high pixel intensity fireball, then morphologically filtered to reduce the impact
of random noise and non-fireball objects. A morphological fill operation ensured
that the detected fireball contour did not include interior changes in intensity,
such as from the soot on the surface seen in Figure 2.17. The edge of the resulting
binary object was extracted using the MATLAB edge command to create the fire-
ball edge data. Figure 2.17 shows an example extracted fireball contour overlaid
onto the source image.

To identify the time the shock wave detaches from the fireball, images from
camera 3 were sequentially differenced to isolate changes between frames, then
normalized between 0 and 1 to prevent over ranging. The density increase caused
by the shock wave changes the index of refraction of the air. The distortion of the
background image of the test site as a result of the shock wave caused refractive
index change created a BOS effect [71, 109, 110]. The distinction between shock
attached and shock detached frames allowed the identification of shock detach-
ment time from the fireball. Figure 2.18 shows an example of the sequentially
differenced frames highlighting the shock wave against the natural background.

The extracted fireball profile for the f = 384.6 rad/m 880 g charge at five
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Figure 2.18: (a) Immediately before the shock begins separating from the fireball,
there is no distortion of the background image, identifiable in background sub-
tracted image by the smooth and consistent color gradient outside the fireball. (b)
As the shock begins separating from the fireball, a distortion of the background
can be seen between the peaks of the interface. (c) After a short time the shock is
fully separated from the product gases and is fully visible around the perimeter
of the fireball. (d, e, f) Zooming in to the indicated 160 pixel by 160 pixel region
and performing a histogram stretch highlights the shock detachment process.
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different time steps is plotted in Figure 2.19. The radius profile shows peaks and
valleys roughly corresponding to the charge perturbation frequency. There was
a broad variation that is attributed to the charge not being perfectly spherical.
This variation was subtracted by calculating a local mean radius R̄loc over the
nearest 60 radii, and subtracting that average from each point, returning the zero
centered variation in radius about a local average. The overall average radius for
each time step R̄ was then re-added to the variation to recover the corrected radii
Radj.

Radj = R − R̄loc + R̄ (2.6)

The f = 384.6 rad/m 880 g charges exhibited this phenomena particularly strongly.
The evident change in average radius near 0 radians is removed while maintain-
ing both the surface perturbations and overall average fireball radius. This pro-
cess is applied uniformly to all perturbed sphere mixing region data.

Figure 2.19: The extracted fireball contours for a 880 g f = 384.6 rad/m test
before (top) and after (bottom) the moving average processing was applied. The
contours shown are taken at t = 0.15 ms, t = 0.225 ms, t = 0.3 ms, t = 0.375
ms, and t = 0.45 ms (frame 30, 45, 60, 75, and 90). The shaded regions cover the
position of the detonator, which is removed from radius and mixing calculations
to avoid geometric effects.
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The mixing region estimation methods used for the shotgun primer flows are
relied on a optically transparent flow but the C4 fireball was optically opaque,
which thus required a different estimation technique. To estimate the mixing
region, the extracted radii were sorted by angle relative to the vertical. Radii
within π/4 radians of the top of the charge were removed to limit the impact of
the detonator well geometry on the results. The top and bottom 5% of radii were
removed to limit the impact of singular jets on the overall measure. The mixing
region width h for each time step was then calculated using Equation 2.7.

h =
Rmax − Rmin

2
(2.7)

The intent was to mitigate the impact of a single peak or valley on the mixing
width for the entire flow, while still capturing the behavior on the extremes. This
measure also corresponds roughly to the 5%-95% rule for mixing width descrip-
tions in modeling [98, 111]. Figure 2.20 shows the mixing widths overlaid onto
the data from the same f = 384.6 rad/m 880 g charges shown in Figure 2.19. The
mixing width was seen to be well described by this method.
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Figure 2.20: The mixing widths (red lines) for the fireball radii shown in Figure
2.19. From top to bottom, t = 0.15 ms, t = 0.225 ms, t = 0.3 ms, t = 0.375 ms,
and t = 0.45 ms. The fireball radii are plotted relative to the mean radius for that
frame.
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CHAPTER 3

CONSIDERATIONS FOR THE ESTIMATION OF THE
FRACTAL DIMENSION

Digital image processing techniques were developed to identify the contour
of the fireball, which was then examined to determine the fractal dimension as a
function of time.. Three-dimensional data was used to validate the 3D isotropy
of the fractal measurement to within its error. Experiments were conducted with
explosive masses of 1 g, 105 g, and 880 g scales to study the impact of scale on the
evolution of the fractal dimension.

3.1 Computation of the fractal dimension for high speed images

High speed cameras have both advantages and disadvantages for the suc-
cessful estimation of fractal dimension. The low pixel resolution of imaging sen-
sors increases in the uncertainty in the estimated fractal dimension, as many de-
sired spatial scales may fall below the imaging resolution of the cameras. Low
exposure times allow the capture of sharp boundaries not blurred by motion,
making the best use of the available resolution. The dimensional symmetry prop-
erties of fractals enables a single camera view to capture a fractal dimension that
is representative of the entire flow.

3.1.1 Box counting methods

The fractal dimension of all tests was computed using a standard two dimen-
sional fixed grid box counting algorithm. In box counting, an evenly spaced grid
is placed over a fractal, and the number of boxes containing the fractal is counted.
This processes is repeated using progressively finer grids until the spacing of the
grid s → 0. For digital images, the grid is refined by the pixel resolution of the
imaging sensor. Images that have been processed by edge detection routines were
used, and a fractal dimension DF was estimated with

DF = lim
s→0

log(n(s))
log(1/s)

(3.1)
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Figure 3.1: The progression of the box counting algorithm on a fireball from a
perturbed sphere. The boxes progress from (a) a large size box down to an (b)
intermediate and (c) small sized box. The green boxes represent a portion of the
white grid which contains a section of the fractal. The image has been cropped
tightly to the fireball for the purposes of this figure.

which is a discrete derivative of Equation 1.35. Where n(s) is the number of boxes
containing the curve at box scale s. The box scale s is the side length, in pixels,
of the boxes at that scale, and is a function 2x, where x is the depth. Figure 3.1
shows an example of several intermediate steps of a box counting algorithm. The
limit was estimated by the inverse slope of a linear least squares fit in the log-
log space as shown in Figure 3.2. The box counting dimension, or Minkowski-
Bouligand dimension, is analogous to the Hausdorff dimension for fractals that
satisfy the open set condition. Being natural fractals, it is not known if fireball
contours satisfy this condition. However, the box counting dimensions is a strict
upper bound on the Hausdorff dimension when converged, so its use here is
appropriate [48].

3.1.2 Fractal uncertainty

The fractal dimension is calculated by computing a least-squares best fit of a
line to a number of data points equal to the number box counting scales. The un-
certainty in the fractal measurement was identified in the uncertainty of the least
squares fit to the data. The y-intercept of the fit was not used in these analyses.
The uncertainty of the slope σB of the least-squares fit is a function of the number
of samples N and of the data points (xi, yi) being fit[112],

σB =

√√√√ 1
N − 2

N

∑
i=1

(
yi −

∑ x2 ∑ y − ∑ x ∑ xy
∆

− N ∑ xy − ∑ x ∑ y
∆

xi

)2√N
∆
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where
∆ = N ∑ x2 − (∑ x)2

The uncertainty of the fractal measurement is therefore directly related to the size
of the image and the number of fractal scales that can be represented. This means
that the overall uncertainty is relatively constant throughout the evolution of the
fireball. Figure 3.2 shows a representative fractal fit with the 95% confidence
bounds overlaid. The box counting algorithm works best with square images

Figure 3.2: The uncertainty of the fractal dimension is tied to the goodness of fit
parameters for the linear regression of the slope between fractal scale and fractal
counts. The 95% confidence interval of the fit (left) is seen in the outer shaded
region. The maximum uncertainty (right) across all tests for each frame number
shows that the systematic uncertainty due to fitting drops as the fireball expands
to cover more of the image.

with side lengths of 2x pixels. When images are not square, the algorithm pads
the images with black pixels. The 400 x 250 pixel images used in this study were
padded to 512 x 512 before processing. This has the effect of slightly reducing
the estimated dimension, but was minimal here and within the calculated uncer-
tainty.

3.1.3 Sensitivity of box counting methods to image size

The Shimadzu HPV-X2, the primary diagnostic camera used in this study,
has a sensor size of only 400 x 250 pixels. The impact of low resolution images on
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the measured fractal dimension was studied using multiple images of the same
known fractal at different resolutions. Three fractals where chosen for analysis.
The Sierpinski’s Carpet fractal and the Vicsek fractal, both shown in Figure 3.3,
were chosen for their ease of generation and square aspect ratio. The third fractal
is the Douady rabbit, a member of the Julia set. The Julia set is a set in complex
dynamics where a small perturbation can cause large variance in the computed
value of a function, and is a common source for generating fractals.

To generate a Sierpinski’s Carpet, an area is sub-divided into 9 equal areas,
and the center area is removed. In matrix form,


1 1 1
1 0 1
1 1 1

→



1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1
1 1 1 0 0 0 1 1 1
1 0 1 0 0 0 1 0 1
1 1 1 0 0 0 1 1 1
1 1 1 1 1 1 1 1 1
1 0 1 1 0 1 1 0 1
1 1 1 1 1 1 1 1 1


The processes is recursively repeated. The exact Hausdorff dimension of Sierpin-
ski’s Carpet is 1.8928, calculated by

DF =
log 8
log 3

= 1.8928

The Viscek fractal is generated by taking a plus sign, and recursively replac-
ing the arms with smaller plus signs. In matrix form,


0 1 0
1 1 1
0 1 0

→



0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 0
0 1 0 0 1 0 0 1 0
1 1 1 1 1 1 1 1 1
0 1 0 0 1 0 0 1 0
0 0 0 0 1 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 1 0 0 0 0


The exact fractal dimension of the Vicsek fractal is 1.465, calculated by

DF =
log 5
log 3

= 1.465

Both the Sierpinski carpet and Vicsek cross fractals use generators represented on
a 3 by 3 matrix, and are well suited to matrix based computation.
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Figure 3.3: The Vicsek fractal (Top left) and Sierpinski Carpet fractal (Top right)
are presented normalized between -0.5 and 0.5 in both x and y. The Douady rabbit
(bottom) normalized between [-1.5,1.5].
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The Douady rabbit generated by iterating the Mandelbrot set map,

z = z2 + c

where c is a fixed complex number. In this case, c = −0.123 + 0.745i. The com-
puted fractal dimension of the boundary of this set is 1.3934.

Here a high resolution fractal was first generated using MATLAB. For the
Vicsek and Sierpinski fractals, this was 150,000,000 points over 9 fractal scales.
For the Douady rabbit, a set of 1,589,222 points was computed to a depth of 300
iterations. The chosen size of fractals was memory limited during computation.
A synthetic image of the fractal was then generated at a fixed resolution. Images
are generated with 100 linearly spaced side lengths between 2 and 214. Each im-
age is generated by determining the total number of fractal points contained by
each pixel, then applying a universal threshold to create a binary image of fractal
pixels. The fractal dimension of each image was then estimated by box counting.
As is shown in Figure 3.4, the estimated fractal dimension converges closest to the
true fractal dimension when the image size is a power of 2. The chosen fractals
show opposing behavior. The Vicsek fractal overestimated the calculated dimen-
sion by up to 9.5% consistently before dropping to near the expected value. The
Sierpinski fractal behaved inversely, approaching the calculated value from be-
low then dropping to underestimate the dimension by 6.1%. The Douady rabbit,
despite being the most non-rectangular, had the best error, with a max deviation
of 5.6% from the Hausdorff dimension. This bounding behavior occurs consis-
tently regardless of the full size of the image, and is expected with the boxcount-
ing algorithm. This establishes the expected error for box counting algorithm on
small images, which is found to be less than 10% from the expected fractal di-
mension and not a strong function of the image size. This indicates that the small
image sizes used in here still accurately represent the fractal dimension of the
fireball contours.

3.2 Consistency of fractal dimension with respect to rotation

Explosive events are frequently studied using low order models that make
significant assumptions about the symmetry of the event. For example, one di-
mensional radial models assume spherical or cylindrical symmetry. For the ap-
plication of fractal dimension to the complete fireball surface, the assumption is
made that surface complexity is evenly distributed across the surface. For the
perturbed sphere test series, all charges had axially symmetric geometry about
the initiation point, with perturbations being made entirely in the azimuthal di-
rection. All other charges considered were nominally radially symmetric about
the long axis of the detonator. A planar slice taken from any imaging angle is as-
sumed to have the same fractal dimension as any other slice that passes through
the center point of the blast. As such, the estimated fractal dimension D2 of a
2D slice is taken to be representative of the estimated fractal dimension D3 of
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Figure 3.4: The estimated fractal dimension as a function of image size side
length, with the exact fractal dimension for each fractal as a black horizontal line.
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the 3D surface represented by the fireball. This is supported by the additive rule
of fractals [42, 56], which states that the fractal dimension of the plane interest-
ing the three dimensional fractal object with dimension D3 will be related by
D3 = D2 + 1. Experimental results using multiple camera angles further rein-
force the validity of this assumption.

To confirm that the measured fractal dimension of a fireball is consistent re-
gardless of fireball orientation, images of a single explosion from 5 different view-
ing angles were processed to extract the time resolved fractal dimension. The
experiment was performed three times by detonating a 1.32 kg spherical charge
with constant camera positions. The period of validity for these fireballs runs
from t = 0 ms to t = 2.6 ms, or 0 to 0.236 scaled time. The behavior of the fractal
dimension for all 5 cameras for all three tests is shown in Figure 3.5.

To determine variation, a mean fractal dimension was computed for every
time step. Percentage difference from the mean was computed for all cameras,
and is reported in Figure 3.6. For the first frames, estimated fractal dimension is
highly variant. The extracted boundary contains few pixels spread over a small
portion of the image, so large deviation is expected in the early time. Past 1 ms,
the extracted fractal is largely consistent, with the deviation from the mean fractal
falling to within 10%. In Figure 3.7, each camera shows good consistency from
test to test. The 0◦ camera has both the most usable data points and the tightest
grouping. The sudden drop in the 45◦ camera at approximately t = 1.5 ms is seen
in two of the tests but not the third. This time coincides approximately with the
fireball beginning to interact with the shock reflection plate, which complicated
the fireball extraction, and may distort the expected fractal evolution.

In these tests, the fireball begins to exit the individual fields of view at dif-
ferent times, which changes the percentage of the fireball interface visible. A
mathematical fractal is scale invariant, and will return the same fractal dimen-
sion regardless of the section measured [42]. The fireball exiting the field of view
should therefore have minimal impact on the extract fractal dimension as long
as there are sufficient boundary data points available. Once the fireball begins to
exit the horizontal field of view, the number of points on the edge of the fireball
drops. A similar trend occurs when the fireball is occluded, creating two sepa-
rate curves divided by a non-fractal object. As a result of these behaviors, fractal
data collection was stopped once the fireball was either obstructed by an object
or exited the horizontal field of view.

The fractal dimension of a fireball measured by box counting is found not to
vary as a function of the viewing angle. This validates the assumption of axial
symmetry throughout all three-dimensional testing, and supports the conclusion
that the fractal dimension is representative of the fireball as a whole.
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Figure 3.5: (top) Estimated fractal dimension for all 5 camera angles across all 3
tests. (bottom) Data from each individual test from all angles for the three repeats
performed. There is high dispersion in the early time, but all cameras return to
the same trend beyond about 1 ms.
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Figure 3.6: The mean fractal dimension (top) of all tests and camera angles shows
a steady trend. The initial variation from that mean (bottom) is large, but falls to
consistently below 10%. The measured fractal dimensions are within the uncer-
tainty of the mean fractal dimension for all camera angles.
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Figure 3.7: The fractal dimension of each independent camera broken down by
test. The 60◦ and 315◦ camera data ends at earlier times because the fireballs
either exit the field of view or become obstructed.
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CHAPTER 4

FIREBALL DIMENSIONS AND CHARACTERISTIC LENGTHS

To determine the mixing region width and fractal dimension of the fireballs
extracted from experiments, spatially and temporally resolved radius data was
required for all tests. The discussion of results first covers baseline measurements
of fireball radius and the determined characteristic lengths and times. Time re-
solved radius data is reported for all tests alongside discussions of any critical
features of the fireball radius evolution. The data was extracted for all fireballs
as a function of the explosive charge center, the angular position on the fireball,
and the elapsed time post-detonation. The scaling criteria for supporting data is
discussed, and scaling variable values are reported. While spatially averaged ra-
dius data is presented here as a function of only time, when determining mixing
region width the spatial component of the radius data is important, and repre-
sentative fireball edges will be presented here.

4.1 Fireball and gas cloud radius data

To validate the bulk behavior of the fireball, the temporally and spatially
resolved radius of the fireball contours was computed for all data sets. Spatial
resolved data is temporally averaged to determine a bulk fireball radius for each
time step. While averaged data is presented here, including averaging over re-
peated tests, a full test-by-test breakdown of radius data can be found in Ap-
pendix B. For real explosive events, the contour of the fireball surface is not a
smooth circle, so an average radius is used. As shown in Figure 4.6, the average
radius is a good representation of the bulk behavior of the fluid.

Shotgun primer radius data is presented averaged by confinement spacing in
Figure 4.1. Radius data was collected from the first detection of a gas cloud radius
greater than the primer gun radius up until either reshock from outside the test
section or the from the gas cloud test section. The large variance between peaks
and valleys in the lower confinement cases is characteristic of the introduction of
mixing along a curved front as the cloud expands towards the confining plate as
described in Figure 2.3.

The radius data for all PBXN-113 tests is broken down by camera angle and
test number in Figure 4.1. Radii are reported until the fireball was either ob-
scured or exited the sides of the field of view. The camera positions to either
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Figure 4.1: Averaged radius data for all confinement levels. One charge diameter
(CD) is 2.4 mm.
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side were more quickly obscured by the support frame for the charge, and have
correspondingly shorter record lengths.

The radius data for both gram scale tests is shown in Figure 4.3. Radius
is measured from whenever the product gas cloud is first visible to the end of
recording. In the gram scale case, the bandpass filter limits the visualization of
light produced within the test section. This prevents the detonation from wash-
ing out early time diagnostic information. It also prevents the use of illumination
based metrics for the identification of the fireball. The optical density of the fire-
ball remains high, however as Primasheet 2000 has a high soot production that
renders the fireball largely opaque. The identification of the fireball is therefore
the inverse of the direct imaging tests, and focuses on locating the edge of the
optically dense region centered on the detonation event. The radius results pre-
sented here are in line with the other tests conducted. The gap in the detected
radius measurements at around 0.2 ms is representative of the secondary shock
detaching from the fireball and being detected instead of the fireball. Data was
manually inspected to identify affected frames and they were removed. The im-
pacted times were not the same between charges.

The radius data for the 105 g and 880 g test series are shown in Figure 4.1 and
Figure 4.1 respectively, averaged by initial perturbation. Radius data is presented
from the first frame a full fireball contour could be extracted, until the validity of
the fireball extraction ends. The radii reported here are spatial averages represen-
tative of the bulk fluid flow, as shown in Figure 4.6.

A start of validity (SoV) and end of validity (EoV) frame is determined for
each test. The exact cutoff criteria varied for each test series based on imaging
requirements. Typical reasons for the identification of SoV and EoV include the
fireball exiting the frame, or a change in the imaging characteristics of the fireball.
As the fireball begins to exit the field of view, the number of points over which
the average radius is calculated is reduced. Figure 4.7 shows the evolution of an
extracted profile from fully visible to only partially visible to almost completely
exiting the frame. Once enough of the fireball contour has exited the frame, there
is little confidence that the small sections of fireball visible are representative of
the full fireball behavior. Additionally, changes in the quality of the contour ex-
traction as a result of changing image characteristics will also end the validity.
After the EoV time the results are not reported.

Table 4.1 shows the start and end of validity for the primer driven gas ex-
pansion. Laser illuminated collimated imaging does not have issues with over
exposure due to detonation, so the first frame of gas expansion was valid. The
principal drivers of EoV in the primer tests were shock interactions with the gas
cloud and exiting the field of view. Both were very consistent, so the start and
end of validity frames were very consistent.

Table 4.2 reports the SoV and EoV frames for the tests with PBXN-113. Initial
camera wash out was minimal for these tests, so the fireball exiting the field of
view was the primary driver of validity ending.

The gram scale charges had to be visible around the central obstruction in

63



Figure 4.2: Radius data from all PBXN-113 tests organized by test number (verti-
cal) and camera location (horizontal).
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Figure 4.3: Gas cloud radii extracted from gram scale charges. The radius
plateaus about halfway through the test. The shaded region indicates interac-
tion between the gas cloud and secondary shock.

Figure 4.4: Radius data for the 105 g charges. The 3 cameras are represented by
circles (◦), squares (□), and triangles (△) respectively.
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Figure 4.5: Radius data for the 105 g charges. The 3 cameras are represented by
circles (◦), squares (□), and triangles (△) respectively.
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Figure 4.6: Representative overlaid extracted radii from (a) 1.32 kg PBXN-113
charges at Eglin AFB, (b) product gas cloud from a shotgun primer, (c) 1 m
schlieren images of 1 gram C-4, and (d) the fireball from a 105 g C-4 charge.
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Figure 4.7: (a, b, c) Direct images and (d, e, f) extracted fireball surface contours
for and expanding PBXN-113 charge. A fireball begins (a, d) fully in the field of
view of the cameras, occupying a small number of pixels near the center of the
image. As the fireball expands (b, e) it begins to exit the field of view, reducing
the proportion of contour visible to the cameras. After some time, the fireball (c,
f) nearly completely exits the field of view, and only a small fraction of the overall
contour is visible.
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Table 4.1: The start of validity and end of validity frame numbers for primer
driven gas expansion in varying confinement. The camera frame rate was 200,000
fps.

1 CD 2 CD 5 CD 10 CD 15 CD Open Faced
Test

# SoV EoV SoV EoV SoV EoV SoV EoV SoV EoV SoV EoV

1 1 30 1 30 1 40 1 60 1 60 1 60
2 1 30 1 30 1 40 1 60 1 60 1 60
3 1 30 1 30 1 40 1 60 1 60 1 60
4 1 30 1 30 1 40 1 60 1 60 1 60
5 1 30 1 30 1 40 1 60 1 60 1 60
6 1 30 1 30 1 40 1 60 1 60 1 60
7 1 30 1 30 1 40 1 60 1 60 1 60
8 1 30 1 30 1 40 1 60 1 60 1 60
9 1 30 1 30 1 40 1 60 1 60 1 60

10 — — 1 30 1 40 1 60 1 60 1 60
11 — — 1 30 1 40 1 60 1 60 — —
12 — — 1 30 1 40 1 60 1 60 — —
13 — — — — — — 1 60 — — — —
14 — — — — — — 1 60 — — — —

Table 4.2: The start of validity and end of validity frame numbers for tests with
PBXN-113. The camera frame rates were 50,000 fps.

0◦ Camera 45◦ Camera 60◦ Camera 299◦ Camera 315◦ Camera
Test

# SoV EoV SoV EoV SoV EoV SoV EoV SoV EoV

1 1 37 1 31 1 32 1 28 1 26
2 1 31 1 32 1 30 1 28 1 25
3 1 31 1 30 1 31 1 26 1 26
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the imaging system, and took a consistent number of frames to reach that point.
There were no reflected shocks or exits from field of view, so validity extended
for the full record length, as seen in Table 4.3.

Table 4.3: The start of validity and end of validity frame numbers for gram scale
tests. The camera frame rate was 100,000 fps.

Camera 1
Test Number SoV EoV

1 10 128
2 10 128

The SoV and EoV frames for the 105 g and 880 g perturbed charges are pre-
sented in Tables 4.4 and 4.5, respectively. Washout and bloom in the very early
frames of camera 1 prevent reliable fireball identification until about halfway
through the data, though the fireball was consistently visible out to the end of
recording. Camera 2 experienced the opposite issue, where the short exposure
required to capture the early evolution reduced effective contrast between the
fireball and the background at later times. This was an intentional trade-off to
ensure data overlap between the two primary cameras. Camera 3 was configured
for late time context imaging, and had relatively few properly exposed frames of
the fireball.

4.2 Characteristic lengths and times for fireball and mixing diagnostics

Characteristic values for length and time were calculated for each test se-
ries, and are presented in Table 4.6. For characteristic values impacted by atmo-
spheric conditions, an average value is reported here. The shotgun primer flow
scaling parameters are calculated and presented for completeness, but it was not
expected that scaling for spherical explosions would accurately capture the dy-
namics of the flow in these confined tests. Instead, dynamics are normalized by
the charge diameter (2.4 mm). A complete listing of all values by test can be
found in Appendix B.

4.2.1 Scaling behavior

As shown in Figure 4.8, a fluid dynamic scaling scaling based on explosive
energy and ambient fluid characteristics (speed of sound) is effective at reducing
the radius-time plot to a single effective curve. Dispersion appears to increase
as the fireball radius plateaus, but is otherwise small. For free-air blasts, Sedov
and Wei-Hargather scalings report nearly identical values, so both scalings are
equally effective. Figure 4.9 demonstrates the mean radius and velocity of the
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Table 4.4: The start of validity and end of validity frames as determined by fireball
visibility in the frame for 105 g perturbed C4 spheres. The frame rate of camera 1
was 1,000,000 fps. The frame rate of camera 2 was 400,000 fps. The frame rate of
camera 3 was 50,000 fps.

f = 0 f = 785.4 f = 1574
Camera 1

Test Number SoV EoV SoV EoV SoV EoV
1 40 128 40 128 60 128
2 35 128 40 128 60 128
3 30 128 22 128 60 128
4 40 128 40 128 40 128

Camera 2
Test Number SoV EoV SoV EoV SoV EoV

1 10 90 10 100 10 128
2 10 100 10 82 10 95
3 10 98 10 96 10 102
4 20 90 10 95 10 103

Camera 3
Test Number SoV EoV SoV EoV SoV EoV

1 12 19 14 21 12 20
2 13 23 17 29 12 18
3 15 18 17 29 13 20
4 12 15 27 45 21 44
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Table 4.5: The start of validity and end of validity frames as determined by fireball
visibility in the frame for 880 g perturbed C4 spheres. The frame rate of camera
1 was 800,000 fps. The frame rate of camera 2 was 200,000 fps. The frame rate of
camera 3 was 50,000 fps.

f = 0 f = 384.6 f = 769.2
Camera 1

Test Number SoV EoV SoV EoV SoV EoV
1 27 128 20 128 70 128
2 53 128 36 128 47 128
3 37 128 38 128 58 128

Camera 2
Test Number SoV EoV SoV EoV SoV EoV

1 10 128 10 128 10 98
2 10 85 10 128 10 90
3 10 111 10 104 10 103

Camera 3
Test Number SoV EoV SoV EoV SoV EoV

1 26 33 30 45 26 33
2 22 26 27 42 23 30
3 21 30 28 34 26 33

Table 4.6: Characteristic lengths and times for each test series
Characteristic Primers Gram 1.32 kg PBXN-113 105 g C4 880 g C4

lc 0.097 0.379 2.91 1.75 3.5
tc 0.00029 0.0011 0.0083 0.005 0.0101
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conducted tests scaled with the Wei-Hargather scaling. The attached shockwave
drops out of the strong shock regime M > 5 when predicted by the scaling crite-
ria at t∗ = 0.02, but remains supersonic (M > 1) throughout the remainder of the
collected data. As the surface instabilities grow, mean surface radius and velocity
become less useful measurements, as the spatial variation in the radius becomes
larger, as indicated by the increasing standard deviation of the radius measure-
ment. Scaled surface velocity is not presented for contours extracted from camera
3, as the data is sparse. The growth rate of the perturbations on the surface of the
fireball is important for the establishment of later time mixing.

Figure 4.8: (top) The unscaled fireball radii collapse to a single curve when (bot-
tom) scaled with Wei-Hargather scaling for 105 g and 880 g charges. The shock
radius is included to highlight the separation between the primary shock and the
fireball.

Having established scaling within a single test series, Figure 4.10 shows the
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Figure 4.9: For both perturbed explosive charge masses tested, the shock wave
separates from the gas cloud well after dropping below the strong shock thresh-
old of M > 5, shown with the top horizontal black line. The separation time
is shown with the gray shaded section. The error bars on the radius measure-
ment represent a single standard deviation, highlighting the size of the instability
driven perturbations on the surface of the gas cloud.
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effective scaling of the the other high explosives fireballs. All tests trend towards
a plateau in scaled radius after 0.15 scaled time.

The strong shock regime of the blast passes while the shock wave is still at-
tached to the fireball. The change in fluid behavior with the transition out of the
strong shock regime makes intuitive sense, as expansion rate slows to nearing
the ambient speed of sound and expansion is no longer entirely in the inviscid
regime. Shock wave separation began occurring at time scale of approximately
0.04 scaled time in the Wei-Hargather scaling, as determined by the context cam-
era. Due to the texture of the fireball, shock separation does not occur at a single
time, but rather over a span of times as the shock clears the peaks and valleys of
the fireball. The shock separation was discussed in Section 2.4.4 and Figure 2.18.
Shock separation is complete at 0.065 scaled time, at which point the shock wave
is no longer directly interacting with the fireball. Separation is complete outside
the data collection window for the primary diagnostic cameras, so only it’s very
early impact on the fractal dimension can be accessed.

4.3 Uncertainty considerations

There are two primary sources of uncertainty when working with digital
high speed images, the precise spatial location of an object in frame, and the exact
time each frame captured. For camera sensors with low sensor resolution, the
spatial uncertainty is dominant over the temporal uncertainty. A digital image
has a smallest measurement increment of one pixel. The uncertainty σ in where
exactly an object is within a pixel is ±0.5 pixels in all directions, meaning σx =
σy = σpx = 0.5. When measuring a radius there are three principal sources of
uncertainty: the uncertainty in the contour location, the uncertainty in the charge
center location, and the uncertainty in the calibration between real world units
and pixels, which is again a function of pixel location uncertainty. The distance d
between two points (x1, y1) and (x2, y2) on an image is

d =
√
(x1 − x2)2 + (y1 − y2)2 (4.1)

The uncertainty σf of a function f (x1, x2, · · · , xn) with uncorrelated uncertainties
σ1, σ2, · · · , σn is [113]

σ2
f = σ2

1

(
∂ f
∂x1

)2

+ σ2
2

(
∂ f
∂x2

)2

+ · · ·+ σ2
n

(
∂ f
∂xn

)2

(4.2)
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Figure 4.10: The (top) unscaled fireball radii of all tests (bottom) collapse to a
single curve when scaled with Wei-Hargather scaling.
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Assuming uncorrelated errors between x and y, the uncertainty of a distance be-
tween two points in pixels is then

σd =

√
σ2

x1
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The uncertainty of the calibration value β is a function of the true size of the
calibration object l and the size of that object in the image d.

β =
l
d

(4.8)

For low resolution images such as from high speed cameras, the uncertainty in
the true size of the calibration object is assumed to be significantly smaller than
the uncertainty in the pixel distance (σl ≪ σd). Therefore, the uncertainty in β is

σβ =

√
σ2

d

(
− l

d2

)2

(4.9)

=
σdl
d2 (4.10)

=

√
2σpxl
d2 (4.11)

The radius in real units is calculated by

r = βd (4.12)

Again assuming uncorrelated errors between σd and σβ, the uncertainty in any
given radius measurement is

σr = =

√
σ2

β

(
∂r
∂β

)2

+ σ2
d

(
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(4.13)
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d β2 (4.14)

=
√

σ2
βd2 + 2σ2

pxβ2 (4.15)
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The calibration parameter β and its uncertainty σβ are constant, but the fireball
radius in pixels d varies. Therefore uncertainty is maximized where the fireball
radius is largest when measured in pixels. The uncertainty in the calibration
constant β is very small, so the value of β dominates Equation 4.15. The lower
bound for the uncertainty of a radius measurement is for d = 0, where

σr|d=0 =
√

2σpxβ = 0.707β (4.16)

The mean radius r̄ is computed by

r̄ = ∑i
i=1 ri

n
(4.17)

The base uncertainty for the mean radius is therefore;

σr̄ =

√√√√ n

∑
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The number of points square term drives the measurement uncertainty in the
average radius down. A given radius measurement may have an uncertainty on
the order of 6.4 mm over 1230 mm, but the uncertainty of the mean radius is on
the order of 0.1 mm over the same distance.

Another consideration for uncertainty is the exposure or shutter time of the
camera. For a camera exposure of tsh, an object traveling at a velocity v will cover
a number of maximum number of pixels ∆x that is a function of the calibration
value β.

∆x =
vtsh

β
(4.22)

To introduce a more significant uncertainty than the dominant pixel uncertainty,
an object would have to be moving faster than

v =
σpxβ

tsh
(4.23)

Similarly, jitter in the exposure start time is extremely small for all cameras, and
is neglected in all velocity calculations. Measurement uncertainty values for all
test series are summarized in Table 4.7, along with the cut-off velocity for camera
exposure based location uncertainty to be a factor. The cut-off velocity is large
relative to the velocity of the fireball surface for all tests, and is neglected.
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Table 4.7: Systematic uncertainties associated with measuring distance on digital
images for all test series. Values are representative values for series with multiple
tests. The maximum individual radius uncertainty is presented to provided an
upper bound.

Primer Gram Perturbed C4 (105 g)
Cam 1 Cam 2 Cam 3

tsh
(ns) 10 10 200 200 1100
β
(mm/px) 0.623 ± 0.02 3.5 ± 0.06 4.01 ± 0.01 5.95 ± 0.02 4.02 ± 0.01
σpx

(px) 0.5 0.5 0.5 0.5 0.5
Max σr
(mm) 129 ± 1.64 195 ± 3.7 362 ± 2.8 530 ± 4.5 628 ± 3.2
v
(km/s) 31.2 175 10.1 14.8 1.9

Perturbed C4 (880 g)
Cam 1 Cam 2 Cam 3

tsh (ns) 200 200 1100
β (mm/px) 3.8 ± 0.01 11.9 ± 0.1 8.3 ± 0.05
σpx (px) 0.5 0.5 0.5
Max σr (mm) 515 ± 3.0 1370 ± 14.7 1490 ± 10.7
v (km/s) 9.5 29.75 3.8

PBXN-113
0◦ 45◦ 60◦ 299◦ 315◦

tsh
(ns) 437 437 1000 294 294
β
(mm/px) 5.51 ± 0.02 5.99 ± 0.03 7.76 ± 0.04 7.42 ± 0.04 5.16 ± 0.02
σpx

(px) 0.5 0.5 0.5 0.5 0.5
Max σr
(mm) 1230 ± 6.4 1285 ± 7.3 1001 ± 8.2 930 ± 7.2 882 ± 5.0
v
(km/s) 6.31 6.85 3.88 12.6 8.78
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CHAPTER 5

EVALUATION OF THE MIXING REGION GROWTH FOR
EXPLOSIVE EVENTS USING ANALYTICAL MODELS

The mixing region results from primer driven confined gas expansion and
perturbed C4 spheres are reported. Mixing widths are compared to results from
analytical equations. Fitting parameters are compared to literature values.

5.1 Mixing region width from varied explosives

The mixing region was determined for two principal test series, the confined
explosively driven gas clouds of the shotgun primers and direct detonation fire-
balls of the smooth and perturbed C4 spheres. It is reported as a function of time
and scaled time.

5.1.1 Mixing region growth for variably confined gas clouds1

Manual extraction was performed on the confined explosively driven gas
clouds generated by shotgun primers to validate the mixing region width ex-
tracted by the automated extraction algorithms. Figure 5.1 shows the extracted
mixing region width as a function of time for all primer tests. The mixing re-
gion as extracted by morphological processing was compared to the manually
extracted mixing region. Figure 5.2 shows a representative example of manual
and morphological results for both radius and mixing region width. The two
methods show good agreement, and only the morphological method was used
in further analysis.

1A large portion of this section is reprinted from Christian Peterson, Veronica Espinoza, and
Michael Hargather. Experimental evolution of explosively driven gas clouds in varying con-
finment, Experiments in Fluids, 63(12):1-11, 2022, Reproduced with permission from Springer
Nature.

80



0 0.5 1 1.5

Time (s) 10
-4

0

5

10

15

20

M
ix

in
g
 r

eg
io

n
 t

h
ic

k
n
es

s 
(m

m
) One CD

4 6 8 10 12 14

Time (s) 10
-5

5

10

15

20

25

M
ix

in
g
 r

eg
io

n
 t

h
ic

k
n
es

s 
(m

m
) Two CD

0 0.5 1 1.5 2

Time (s) 10
-4

0

20

40

60

M
ix

in
g
 r

eg
io

n
 t

h
ic

k
n
es

s 
(m

m
) Five CD

0 0.5 1 1.5 2

Time (s) 10
-4

0

10

20

30

40

50

M
ix

in
g
 r

eg
io

n
 t

h
ic

k
n
es

s 
(m

m
) Ten CD

0 1 2 3

Time (s) 10
-4

0

20

40

60

M
ix

in
g
 r

eg
io

n
 t

h
ic

k
n
es

s 
(m

m
) Fifteen CD

0 1 2 3 4 5

Time (s) 10
-4

0

20

40

60

M
ix

in
g
 r

eg
io

n
 t

h
ic

k
n
es

s 
(m

m
) Open Faced

Figure 5.1: The raw mixing region width data as extracted from the shotgun
primer image sets. The data are shown for 10 tests under each confinement con-
dition from 1 CD to the open faced geometry.
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Figure 5.2: (Left) Multiple tests at each spacing are reduced to a single mean
value for both the leading and trailing edge of the gas cloud mixing region. The
crosses and solid line are the peak leading edge data points, and the dots (·) and
dashed line are the “valley” trailing edge points. The data here is the two charge
diameter (2CD) separation case. (right) Comparison of manual tracking (dashed
line) to the automated morphological tracking (solid line) method.

Primer specific uncertainty considerations The uncertainty of the determined
radius for the manual tracking methods is variant across the image space. The
uncertainty is 1.2 mm over a 122 mm radius, or just under 1% uncertainty. The
temporal accuracy is set by the pulsed laser illumination. The 10 ns laser pulse is
driven by a a camera output with 10 ns of jitter, or 0.2% of the nominal interframe
time. The systematic uncertainty of the measurement remains under 1 pixel devi-
ation at the furthest corners of the measurement domain. There are variations in
the pneumatic initiation of the primer, which causes uncertainty in the exact time
of initiation. By using the high speed images, the uncertainty was determined to
be a single frame of jitter added to the interframe time, or 5.7 µs

5.1.2 Mixing width of perturbed spheres

The mixing region width was determined using the methodology from Sec-
tion 2.4.4 for all C4 perturbed sphere tests, and is reported as an average by
perturbation and charge mass. Figure 5.3 shows the mixing region widths and
uncertainties for cameras 2 and 3 for the 105 g charges sorted by perturbation.
Figure 5.4 shows the mixing region widths and uncertainties for cameras 2 and 3
for the 880 g charges sorted by perturbation. For clarity, the uncertainty bars will
be omitted unless relevant to the discussion.
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The baseline case for fireball surface evolution is the detonation of a smooth
sphere. Figure 5.5 specifically highlights the behavior of the mean of the 105 g
smooth charges. The largest difference in measured mixing width was approxi-
mately 15 mm near the end of the measurement. While this difference was larger
than the measurement uncertainty, the mean behavior well represents the behav-
ior of the mixing width for the 105 g smooth charges. The trend of the mean was
consistent with the raw data.

The smooth 105 g mean mixing width was used as a baseline measurement
for comparing the relative evolution of the perturbed 105 g charges. The evo-
lution of the perturbed 105 g mixing widths were compared to the evolution of
the smooth 105 g charge mixing width by subtracting the mixing width of the
perturbed cases from the mean mixing width of the smooth cases, resulting in a
difference in mixing region growth from the smooth baseline. Figure 5.6 shows
the mixing width of the perturbed tests minus the mixing width of the mean
smooth test. The f = 785.4 rad/m tests remained within the measurement un-
certainty of the smooth mean. Tests 3 and 4 trend upward enough to be outside
the uncertainty, but the bulk trend of the data does not vary significantly from
the baseline. The f = 1574 rad/m mixing width growth trends slightly lower
than the baseline. This trend is within the uncertainty until 0.183 ms, where 3
of the 4 tests begin trending downward toward a maximum of 13 mm below the
baseline, where the local uncertainty is 5.1 mm. Overall, there is limited impact
on the mixing region width for the perturbed cases relative to the smooth case.

The evolution of the smooth 880 g charges was analyzed for consistency as
a baseline. Figure 5.7 shows the three 880 g smooth tests and their deviation
from the mean. While test 3 had a consistently lower mixing width, it was within
the uncertainty of the other two tests, and followed the same growth trend. The
mean mixing width of the 880 g smooth tests was used as a baseline to assess the
mixing region growth trends for the perturbed 880 g charges.

The evolution of the perturbed 880 g charges mixing widths were compared
to the baseline case. Figure 5.8 shows the evolution of each perturbed test minus
the baseline mean smooth test. Both perturbations exhibited measurably lower
mixing widths than the smooth case. Test 1 of the f = 384.6 rad/m case in par-
ticular was lower than the baseline, though not outside of uncertainty from the
other 2 tests at that perturbation. Tests 1 and 3 had similar mixing region growth
rates to the baseline, demonstrated by maintaining a consistent offset from the
mean. Test 2 differs in growth rate, growing slower than the baseline measure-
ment. The f = 769.2 rad/m case was more tightly grouped at around a 20 mm
smaller mixing region than the baseline.

Figure 5.9 reports the mixing region width h and the normalized mixing re-
gion width h/lc for all cameras and charge masses. The difference in mixing
width between the 880 g charges is within the uncertainty of the measurement.
The behavior of the mixing region width shows a divergence larger than uncer-
tainty in behavior between the mixing region growth of the 105 g f = 785.4
rad/m charge and remaining charges when normalized against the characteristic
length and time, as is highlighted in Figure 5.9. The 880 g charges all show a
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Figure 5.3: The mixing width by perturbation for 105 g spherical C4 charges
from cameras 2 and 3. The measurement consistency drops significantly when
moving to camera 3.
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Figure 5.4: The mixing width by perturbation for 880 g spherical C4 charges
from cameras 2 and 3. The measurement consistency drops significantly when
moving to camera 3.
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Figure 5.5: The (left) mixing width for individual tests of 105 g smooth charges,
with the mean value plotted in black. The (right) difference of each test from the
mean shows dispersion is slightly higher than the uncertainty of the measure-
ment.

fairly linear growth rate throughout the diagnostic window. The initial growth
rate of the 880 g charges mixing region was slightly lower ( 85%) than the initial
growth rate of the smaller 105 g charges mixing region.

The perturbed 105 g charges initially follow the same approximately linear
behavior as the 880 g configurations, but diverges in behavior at approximately
0.033 scaled time, remaining within the linear growth regime while increasing
the approximate growth rate by a further factor of approximately 2. The change
in growth rate only appears in the the f = 785.4 rad/m 105 g perturbed sphere
case, and the smooth and the f = 1574 rad/m 105 g tests continues on a linear
growth trend. As described in Table 4.4, the last data points are nearing the EoV
for camera 2. The contextual data from camera 3 at a later time suggests that the
apparent spike in seen in camera 2 does not translate to increased mixing region
width at later times. In fact, the camera 3 data, though much more dispersed,
suggests that the growth of the mixing region briefly plateaus as the initial shock
separates from the fireball, before continuing a near linear increase.

The mixing region growth rate with respect to time dh
dt was estimated for the

camera 2 data. To estimate the growth rate, the following fourth order centered
difference scheme was used,

dhi

dt
=

hi−2 − 8hi−1 + 8hi+1 − hi+2

12∆t
(5.1)
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Figure 5.6: The (left) 105 g f = 785.4 rad/m and (right) 105 g f = 1574 rad/m
mixing width for individual tests minus the mean mixing width of the smooth
charges.

Figure 5.7: The (left) mixing width for individual tests of 880 g smooth charges,
with the mean value plotted in black.
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Figure 5.8: The (left) 880 g f = 384.6 rad/m and (right) 880 g f = 769.2 rad/m
mixing width for individual tests minus the mean mixing width of the smooth
charges.

where hi is the mixing width at the ith time step, and ∆t is the time between steps.
Direct numerical differentiation of the data was very sensitive to small variations
in the mixing region width, resulting in anomalous results. To better characterize
the general growth velocity trends at the expense of precision, a moving mean
over 10 time points was calculated for the growth rate. Figures 5.10 and 5.11
shows the impact of the moving mean on the 105 g and 880 g smooth charges.
The moving mean produced a growth rate that was in line with the bulk trends
seen in the width data. The smooth charge configurations for both masses were
used as baseline growth rates.

Figure 5.12 shows the baseline growth rate as a function of time. Both 105 g
and 880 g charges show stable, nearly linear, growth rates over this time period.
The slopes, reported in Table 5.1, are minimal indicating that the growth of these
perturbations is well within a linear regime of growth. There is not any appar-
ent separation in growth rate between the various charges with different initial
perturbations. Even with the moving mean the uncertainty in the velocity mea-
surement is double the value of the measurement. The uncertainty presented is
very conservative, and the primary value of the growth rate calculation is the es-
tablishment of overall trends in the mixing width. The growth rate of the 105 g
charges was influenced by the change in linear behavior highlighted in Figure 5.9,
and has a small but consistent upward slope. These growth rates are slow relative
to the velocity of the expanding fireball. In the context of bulk cloud velocity, the
mixing region growth rates are very similar between charge masses. The similar-
ity is evident in Figure 5.12, where scaling the growth rate by the characteristic
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Figure 5.9: (top) The mean mixing region width averaged across charge con-
figuration. The vertical dashed red line demarcates the approximate separation
point between the behavior of the 105 g f = 384.6 rad/m charge and remain-
ing charges, and the gray shaded region represents the onset of shock separa-
tion. (bottom) Plotting only the data from camera 2 highlights the that while the
change in mixing region growth rate is large, it is only marginally outside the
uncertainty of the measurement.
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Figure 5.10: The (left) raw mixing growth rate data had large dispersion. When
(right) smoothed by a moving mean the growth rates followed the expected
trends from inspection of the mixing width data.

Figure 5.11: The (left) raw mixing growth rate data had large dispersion. When
(right) smoothed by a moving mean the growth rates followed the expected
trends from inspection of the mixing width data.
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velocity C0 and characteristic time t0 collapse the data.

Table 5.1: The slope of a linear fit to the mixing region growth rate, or the lin-
earized acceleration of the mixing region width.

Growth rate acceleration (m2/s2)

Smooth f = 785.4 f = 1574
f = 384.6 f = 769.2

105 g 0.09 0.50 -0.74
880 g -0.51 -0.05 -0.30

The initial perturbations were of magnitude 1 mm, which when compared to
the initial radius of the spheres is small. The 105 g charges had an initial pertur-
bation to radius ratio of h0/R0 = 0.039. The 880 g charges had an initial pertur-
bation to radius ratio of h0/R0 = 0.020. These ratios were considered sufficient
to satisfy the h ≪ R0 assumption that is a requirement from the Plesset equations
[8, 10]. Figure 5.13 shows the evolution of the ratio between the mixing width
and fireball radius. As the fireball expanded, the ratio increased slightly, but sta-
bilized at h(t)/R(t) = 0.065 for the 105 g charges and h(t)/R(t) = 0.07 for the
880 g charges, though the 105 g charges grew to over 0.1 for the smooth and low
frequency tests. The ratio between h and R was very stable for the 880 g test, with
minimal change after 0.02 scaled time. The 105 g charges were similarly stable
until 0.033 scaled time, when the mixing region begins to spike in several tests.
The increase in 105 g charge mixing width seen in camera 2 near the end of its va-
lidity also increases the ratio to around 0.05. Overall, the consistency of the ratio
between the mixing region width and the fireball radius indicates that a scaling
effective for the radius of the fireball would also be effective for the mixing region
width on the surface of that fireball. The effectiveness of this scaling is supported
by Figure 5.9, where the characteristic length and time from Wei-Hargather shock
scaling collapse the width of the mixing region to a single trend.

The impact of large sinusoidal perturbations on the evolution of the mixing
region in bare C4 charges appears to be minimal. The estimated mixing width
was within uncertainty of the baseline for 105 g and 880 g charges. The growth
rates of the perturbed and unperturbed charges were consistent, and appear to be
largely constant with time. The ratio between fireball radius and mixing region
width increases from the initial perturbations, but remained stable for the 880 g
charges. The mixing measurements all take place before the secondary shock
interacts with the surface, and therefore the primary driver of instability on the
surface will be the acceleration of the fireball contact surface with respect to the
ambient air.
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Figure 5.12: The mixing region growth rate for (top) 105 g and (middle) 880 g
charges. The slow perturbation refers to the f = 785.4 rad/m and f = 384.6
rad/m cases for 105 g and 880 g charges respectively. The fast perturbation refers
to the f = 1574 rad/m and f = 769.2 rad/m cases for 105 g and 880 g charges
respectively. The scaled growth rate versus scaled time (bottom) confirms that
the growth rates are very similar for both masses.
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Figure 5.13: The ratio between the mixing region width h and the mean fireball
radius R for (top left) the 880 g charges, (top right) the 105 g charges, and (bottom)
the mean mixing width of each charge configuration as recorded by camera 2.
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5.1.3 Uncertainty in mixing width measurements for perturbed spheres

The uncertainty in the mixing layer thickness is a function of the relative
radius difference between the minimum radii in the valley rval and the maximum
radii in the peaks rpeak. The identification of all mixing regions widths was done
when the radii are already converted to physical units. The uncertainty in a given
mixing region width measurement in mm is found in Equation 5.2, where σrpeak

and σrval are calculated using Equation 4.15.

σh =
√

σ2
rpeak

+ σ2
rval

(5.2)

The relative uncertainty in the mixing region measurement is large compared to
the uncertainty in the averaged radius data. As discussed in the baseline radius
uncertainty, the calibration constant dominates the values for σrpeak and σrval . The
lower bound for the uncertainty in the estimated mixing region width is β.

The uncertainty of the growth rate measurement is obtained by plugging
Equation 5.1 into Equation 4.2. The assumption is made that the uncertainties in
the mixing width do not vary significantly between time steps as the dominant
component β does not change, so σhi−2

≈ σhi−1
≈ σhi+1

≈ σhi+2
≈ σh.

σḣ =
σh

6∆t

√
65
2

(5.3)

As ∆t is very small, the uncertainty of the velocity measurement is very large.
The moving mean calculation, following Equation 4.18, reduces the magnitude
of the uncertainty, but it is still significant compared to the measured values.

5.2 Analysis of analytical models for mixing width

The Mikaelian model for mixing region growth in spherical geometry was
compared to the mixing width data from the two experimental setups. The mix-
ing width in variably confined gases was compared to the model to develop the
underlying technique. Tests of explosive spheres with known initial perturba-
tions were then compared to a modified and unmodified Mikaelian equation and
the results were assessed.

5.2.1 Application of analytical models to mixing in variable confinement2

The Mikaelian model, restated in Equation 5.4, requires the use of a tuning
parameter c to adjust the fit of the model to growth for varying geometries of

2A large portion of this section is reprinted from Christian Peterson, Veronica Espinoza, and
Michael Hargather. Experimental evolution of explosively driven gas clouds in varying con-
finment, Experiments in Fluids, 63(12):1-11, 2022, Reproduced with permission from Springer
Nature.
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explosive expansion.

h(t) = h(0) + R2
0

dh0

dt

∫ t

0

dt
R2 + cA

∫ t

0

(
1

R2

∫ t

0
R2R̈dt′

)
dt (5.4)

This parameter is necessary to achieve good agreement. In [9] it is found that a c
value of 0.1 was appropriate for a cylindrical geometry. For the two dimensional
approximation 1 CD case, which matches most closely with the cylindrical ge-
ometry described commonly in literature, good agreement with the experimental
data is found with c = 0.3. In the 2 CD case, more deviation can be seen in Fig-
ure 5.14, especially in the early time. This is largely attributed to the early time
noise in both peak and valley measurements, as the early time numerical deriva-
tives fluctuate. As the experimental conditions varied from the baseline case, the
value for best fit of the parameter c increases towards unity. This is surprising, as
the variation in confinement increases the geometry moves further from the ideal
case described in literature.
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Figure 5.14: The mixing region width as a function of time is presented for the
experimental data and the Makaelian prediction for the (a) 1CD and (b) 2 CD
cases. The parameter c is found to vary with the geometry of the experiment.
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However, the presence of only the c parameter is predicated on neglecting
the impact of the initial growth rate. Data from very early time explosively driven
mixing is frequently noisy, and it is advantageous to be able to predict mixing re-
gion growth based on incomplete time information. If the initial time ta is taken
as non-zero, the integral equations are broadened to no longer be able to neglect
the initial growth rate term. That initial growth rate term is tuned using the pa-
rameter k, the evolution of which has not been previously discussed in literature.
The parameters were fit to the mixing region data of each confinement. The fit
was done using a least-squares regression. The evolution of the parameter k is
shown in Table 5.2.

The parameter k is a necessary tuning parameter that is dependent on both
external geometry and selected initial seed time ta.

Table 5.2: Variation of k and c parameters with spacing and initial time. The later
seeding time ta = 0.000055 s shows a reduced sensitivity for the parameter c.

ta = 0.00003 s ta = 0.000055 s
Spacing k c k c
1 CD 0.09 0.125 0.025 0.3
2 CD 0.25 0.2 0.75 0.1
5 CD 0.2 0.05 0.05 0.1
10 CD 0.45 2.0 0.15 0.3
15 CD 0.1 1.0 0.125 0.1
Open Faced 0.2 4.0 0.3 0.1

Due to the difficulty in estimating initial parameters for the gas perturbation,
the experimental results were fed to the analytical methods with non-zero initial
times. The definite integrals found in Mikaelian support an arbitrary time inter-
val t0 to t as long as a time radius history, mixing region height ha, and initial
growth rate ∂ha

∂t are known. The behavior of the analytical solution is highly sen-
sitive to the value for dha

dt , which for shotgun primer expansion is on the order of
8 · 105 m/s2. The noise in raw radius measurements is sufficient to introduce sig-
nificant variation in the derived velocity and acceleration estimates. This is seen
as a high deviation between the model and experimental results after ta = 0.0001
s. Seeding the model at a later time ta causes a reduction in the value of c required
to achieve reasonable agreement. However, with the high noise inherent in nu-
merical derivatives, the variation in calculated initial velocity drives the value of
the fitting parameter k away from agreement with c. Without the corrective factor
k, the analytical models begin to under-predict the mixing region width based on
experimental radius data.
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Figure 5.15: At 1 CD, seeding the Mikaelian model with data from ta = 0.00003 s,
using constants of c = k = 0.1, good agreement is achieved between the predic-
tive model and the experimental data. For the 2 CD data, using constants of
c = 0.3 and k = 0.1, good agreement is seen in the early and mid-time, but as the
gas cloud exits the field of view the automatic extraction produces an artificially
small mixing region, which diverges from the model.
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5.2.2 Analytical models for the growth of mixing in the perturbed high
explosive spheres

The same modified Mikaelian fit developed from work with shotgun primer
driven gas clouds [101] was applied to the perturbed sphere data. Equation 5.5 is
a restatement of evolution of a perturbation in a spherical expanding shell.

h(t) = h(0) + R3
0

dh0

dt

∫ t

0

dt
R3 + cA

∫ t

0

(
1

R3

∫ t

0
R3R̈dt′

)
dt (5.5)

There is an implied assumption in Equation 5.5 of the Atwood number A remain-
ing constant with time, allowing it to be pulled out of the integrals. In the context
of an explosion, the density ratio between the product gases and the air does not
remain constant. When treating the Atwood number as a function of time, it re-
mains within the double integral in the third term. The second term is assumed
to be zero due to there being no initial perturbation growth rate (dh0

dt = 0), which
yields:

h(t) = h(0) + c
∫ t

0

(
1

R3

∫ t

0
AR3R̈dt′

)
dt (5.6)

However, for an explosive experiment it is advantageous to retain the second
term, and reform the integral as between an initial known mixing state at ta and
the end time t:

h(t) = h(ta) + R3
0k

dha

dt

∫ t

ta

dt
R3 + c

∫ t

ta

(
1

R3

∫ t

ta
AR3R̈dt′

)
dt (5.7)

Equation 5.7 includes the same fitting parameter k described in the shotgun primer
work. The parameter k is an indicator of the scalar offset between the experimen-
tal data and the output of the analytical model. A k of 1 indicates good agree-
ment, k > 1 indicates under prediction by the model, and k < 1 indicates over
prediction by the model.

The perturbed spheres had known initial perturbation amplitudes (ha = 1
mm) and wavenumbers ( f ), in addition to well characterized mixing width evo-
lution. Fits were done for both modified and unmodified Mikaelian equations.
The equations were fit for each perturbation.

To assess the impact of the variable Atwood number on the efficacy of the
model, the parameter c was determined for three variations of Equation 5.6. As a
baseline, a constant Atwood number based on the initial, condensed phase den-
sity ratio was calculated by

A =
ρC4 − ρair

ρC4 + ρair
(5.8)

where ρC4 = 1500 kg/m3 and ρair ≈ 0.95 kg/m3. In this case, the specific Atwood
number is not crucial to the effectiveness of the fit, as it is a constant modifier to
the parameter c. Figure 5.16 shows the resulting fits for all perturbations and
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Figure 5.16: The results of fitting Equation 5.5 with a constant Atwood number
to experimental mixing region results for (left column) 105 g charges and (right
column) 880 g charges.
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masses. The exponential growth predicted by models of the linearized regime
results in under-prediction initial, then over-prediction at the tail of the data.

By allowing the Atwood number to vary with time, the model can be reac-
tive to the significant temporal variation in relative densities found at the contact
surface. The Atwood number was calculated with respect to time by

A(t) =
mc4

4/3πR(t)3 − ρair
mc4

4/3πR(t)3 + ρair
(5.9)

where the density of the explosive product gas was estimated by evenly distribut-
ing the charge mass over the volume of the fireball. The intention was to capture
the changing dynamics of the fireball as it over-expands, switching sign of the
density ratio. Figure 5.17 shows the variation of the Atwood number as a func-
tion of time based on Equation 5.9. Figure 5.18 shows the resulting fits for all
perturbations and masses. The variation of the Atwood number improves the
agreement with the early experimental data, but the change of sign in the At-
wood number as the ambient air becomes denser than the expanding product
gases results in the predicted mixing width becoming negative.

Figure 5.17: The evolution of the Atwood number for (left) the 105 g charges and
the (right) 880g charges.

To account for the change in sign, the absolute value of the variable Atwood
number was computed. Figure 5.19 shows the resulting fits for all perturbations
and masses. The identified value for the fitting parameter c is reported for all
treatments of the Atwood number in Table 5.3 and Table 5.4 for 105 g and 880 g
charges, respectively.

The modified Mikaelian model coefficients c and k presented in Equation 5.7
were computed using the absolute value of the variable Atwood number. Figure
5.20 shows the fits for ta = 0.05 ms and ta = 0.1 ms from the 105 g and 880 g
charges, respectively. Table 5.5 and Table 5.6 reports the values fit values of c and
k. The addition of k shifts the fit towards the center of the data by disconnect-
ing it from the initial surface perturbation. However, the modified model does

100



Figure 5.18: The results of fitting Equation 5.6 with an estimated variable Atwood
number to experimental mixing region results for (left column) 105 g charges and
(right column) 880 g charges.
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Figure 5.19: The results of fitting Equation 5.6 with the absolute value of an es-
timated variable Atwood number to experimental mixing region results for (left
column) 105 g charges and (right column) 880 g charges.
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Table 5.3: Variation of fitting parameter c for Equation 5.6 by perturbation for
the 105 g charges. Three different methods of computing Atwood number are
reported: constant Atwood number computed for the pre-detonation condensed
phase, variable Atwood number that is allowed to go negative, and the abso-
lute value of the variable Atwood number. The numbers in brackets are the 95%
confidence intervals.

Constant Variable Absolute Value
Smooth -0.51 [-0.55, -0.47] -2.5 [-2.6, -2.3] -1.5 [-1.6, -1.4]

f = 785.4 rad/m -0.47 [-0.51, -0.44] -2.6 [-2.7, -2.4] -1.4 [-1.5, -1.3]
f = 1574 rad/m -0.59 [-0.63, -0.54] -2.9 [-3, -2.8] -1.7 [-1.8, -1.6]

Table 5.4: Variation of fitting parameter c for Equation 5.6 by perturbation for
the 880 g charges. Three different methods of computing Atwood number are
reported: constant Atwood number computed for the pre-detonation condensed
phase, variable Atwood number that is allowed to go negative, and the abso-
lute value of the variable Atwood number. The numbers in brackets are the 95%
confidence intervals.

Constant Variable Absolute Value
Smooth -0.83 [-0.88, -0.78] -4.2 [-4.4, -3.9] -2.4 [-2.5, -2.3]

f = 384.6 rad/m -0.6 [-0.64, -0.57] -3.2 [-3.5, -2.9] -1.7 [-1.8, -1.6]
f = 769.2 rad/m -0.57 [-0.61, -0.54] -2.7 [-2.9, -2.6] -1.6 [-1.7, -1.6]
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not exhibit the same characteristic upwards deviation of the unmodified model
(Equation 5.6).

The behavior of the k parameter is surprising for two reasons. The meth-
ods used to estimate the perturbation width from the experimental data were
designed to produce a conservative value. As the fireball surface complexity in-
creases, the likelihood of the extracted fireball contour being influenced by 3D
mixing effects and returning a lower value for the mixing region also increases.
In the context of the transition out of a linear mixing regime, the value of k is am-
plifying the impact of positive radius integral and initial growth velocity term,
which is counter-acting the sign change in the Atwood number.

Table 5.5: The fitting parameters c and k from Equation 5.7 for 105 g charges using
the absolute value of the variable Atwood number. The numbers in brackets are
the 95% confidence intervals.

c k
Smooth -0.26 [-0.36, -0.16] 2.3 [2.1, 2.6]

f = 785.4 rad/m -0.83 [-1, -0.61] 0.98 [0.84, 1.1]
f = 1574 rad/m -0.31 [-0.38, -0.24] 1.7 [1.6, 1.8]

Table 5.6: The fitting parameters c and k from Equation 5.7 for 880 g charges using
the absolute value of the variable Atwood number. The numbers in brackets are
the 95% confidence intervals.

c k
Smooth -0.19 [-0.31, -0.066] 2 [1.7, 2.2]

f = 384.6 rad/m -0.13 [-0.27, 0.0065] 1.6 [1.3, 1.9]
f = 769.2 rad/m -0.21 [-0.34, -0.078] 1.6 [1.3, 1.8]

All perturbations show a upward trend in the late time. Figure 5.21 shows
the fit curves for each perturbation from the unmodified Mikaelian model with
the absolute value treatment of the Atwood number (Figure 5.19) on the same
axes. When scaled, the fits collapse well to a single curve. The shift in behavior
initially described with Figure 5.9 at 0.033 scaled time. The growth of the model
values away from the experimental values after this point indicates a shift in
mixing behavior. The scaled mixing region width at this point is h∗ = 0.016. The
identified values of c vary between -1.4 and -2.5. Removing the 880 g smooth
case, the variation reduces to between -1.4 and -1.7, with an average value of -
1.58, and appears to be indicative of the behavior of this charge geometry. Figure
5.22 shows the Mikaelian fit for the average c value in scaled units. The value
of the mixing width is under-predicted for most of the data, but the slope of the
early time data agrees with the model. After a scaled time of t∗ = 0.03, the slope
of the fit diverges from the slope of the data. The averaged value for c appears
to be representative of the mixing evolution for this charge configuration prior to
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Figure 5.20: The results of fitting the modified Mikaelian equations to the exper-
imental mixing region results for (left column) 105 g charges and (right column)
880 g charges.
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t∗ = 0.03. The 880 g smooth test cases had a higher mixing region width to radius
ratio than the other test cases, as seen in Figure 5.13. The ratio is important, as
it relates the mixing width to the principal driving component of the model, the
fireball radius, and through the radius, the estimated Atwood number.

The inclusion of the ambient density in the calculation of the Atwood num-
ber neglects the presence of the shock compression of the air immediately in front
of the advancing fireball. In the time period studied, the shock is being directly
driven by the gas cloud expansion, and has not sufficiently separated from the
fireball for there to be attenuation of the shocked air density. To account for the
change in air density, the Mach number of the shock wave Ms is determined from
extracted shock velocity and the local speed of sound. The shock velocity U is de-
termined by using a centered difference method on the extracted fireball radius
R. The Mach number is then calculated by

Ms(t) =
U(t)
C0

(5.10)

The density jump across a normal shock wave is determined by a relationship be-
tween Mach number Ms and the shocked medium ratio of specific heats γ [114].

ρ2

ρ1
=

mc4
4/3πR(t)3 − ρs

mc4
4/3πR(t)3 + ρs

(5.11)

The air density behind the shock wave ρs and directly behind the shock wave is
a function of time calculated by

ρs(t) = ρa
(γ + 1)Ms(t)2

(γ − 1)Ms(t)2 + 2
(5.12)

The Mach number of the shock wave is high, decreasing from 8 towards 2 over
the course of the fireball expansion. The density ratio varies from 5.56 to 2.66. The
time variant value for the Atwood number using the shocked air as the second
medium is

A =
ρC4 − ρs

ρC4 + ρs
(5.13)

The increase in density shifts the inflection point of the Atwood number earlier
in the evolution of the fireball. The impact of the earlier inflection point is seen
in Figure 5.23. The earlier sign change causes significant underestimation of the
mixing width.

Applying the estimated shocked Atwood number to the complete Mikaelian
model with initial growth rate term in Equation 5.7 improves the agreement of
the model with the data. The parameter k was fixed at 1, and only the value for
c was fit. Tables 5.7 and 5.8 report the value for c by perturbation for 105 g and
880 g charges, respectively. The average c value for the 105 g charges is -0.36,
-0.26 for 880 g charges, and -0.31 across all masses and perturbations. The higher
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Figure 5.21: Fit line for all perturbations from (top) 105 g and (middle) 880 g
charges. (bottom) Scaling the mixing width and time by the characteristic values
shows a collapse to a single representative fit. The red dashed vertical line repre-
sents the shift of behavior first described in Figure 5.9. The 880 g smooth charges
have c = −2.5, while the other perturbations have −1.7 < c < −1.4.

107



Figure 5.22: Fit line for the average fit value of c = 1.58 for Equation 5.6.

c value corresponds to a increase in curvature towards to the end of the data, as
exemplified in the difference between the 105 g smooth and 105 g f = 785.4 rad/m
cases. The third term of Equation 5.7 is dominant in the late time due to the R3

term, so varying c has greater impacts as time increases.

Table 5.7: The fitting parameter c from Equation 5.7 for 105 g charges using the
absolute value of the variable shocked Atwood number. The numbers in brackets
are the 95% confidence intervals.

c
Smooth -0.45 [-0.48, -0.42]

f = 785.4 rad/m -0.26 [-0.28, -0.24]
f = 1574 rad/m -0.37 [-0.39, -0.35]

Using the average fit value for c, a scaled Mikaelian fit was computed. Figure
5.25 shows the averaged fit over all 105 g and 880 g data. The averaged fit is rep-
resentative of the slope in h∗ before t∗ = 0.03, but trends upwards away from the
bulk data trend in the later time. The divergence in slope is less severe than seen
in Figure 5.22, indicating that the transition to a more physically representative
Atwood number may extend the time range under which this model is accurate.
The upwards trend is principally influenced by the smooth charge cases, which
have consistently higher c values than the perturbed cases.

Comparing the universal value of c found for the shocked air treatment of
the Atwood number to the values found for the open faced shotgun primers in
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Figure 5.23: The results of fitting Mikealian equations with the ambient density
replaced by the estimated shocked air density to the experimental mixing region
results for (left column) 105 g charges and (right column) 880 g charges.
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Figure 5.24: The results of fitting the Equation 5.7 with the ambient density re-
placed by the estimated shocked air density to the experimental mixing region
results for (left column) 105 g charges and (right column) 880 g charges.
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Table 5.8: The fitting parameter c from Equation 5.7 for 880 g charges using the
absolute value of the variable shocked Atwood number. The numbers in brackets
are the 95% confidence intervals.

c
Smooth -0.37 [-0.4, -0.33]

f = 384.6 rad/m -0.2 [-0.23, -0.17]
f = 769.2 rad/m -0.22 [-0.24, -0.19]

Figure 5.25: A fit to Equation 5.7 with an average c value of -0.31, and a fixed k
value of 1, scaled using the Wei-Hargather characteristic lengths and times.
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Table 5.2, the influence of the gas cloud geometry is apparent. In an open faced
configuration, the primer driven gas cloud was more similar to a jet than an ex-
panding cylinder or sphere of gas. The c parameters are therefore quite different.
The high confinement cases, however, were more representative of the ideal ex-
panding cylinder geometry represented by the model, and show a similar value
for c to the results for the spherical expansion case.

The reasons for poor fit when working from t0 can potentially be explained
by considering the assumptions on the initial growth of the system. As was de-
scribed, the radius of the initial perturbation in the charge geometry is 25 times
and 50 times smaller than the charge radius for the 105 g and 880 g charges, re-
spectively, but grows to around 10 times smaller, as seen in Figure 5.13. In the
early time, before an effective mixing width can be estimated, the width ratio
increases at a rate much higher than recorded after 0.01 scaled time. This is an
indicator that the flow has already transitioned out of the early linearized regime
that is the primary focus of the Mikaelian analytical models. The angular wave-
length of these perturbations straddled the boundary between what is typically
considered as part of the linear regime [13, 115]. Furthermore, the adoption of
the variable Atwood number changes the underlying exponential behavior of the
model. The shift in relative density towards the air as the fireball over-expands
occurs at approximately 11.5 charge radii, and the impact is apparent in the in-
flection of the fit. This is supported by the significant improvement in fit achieved
by limiting the scope to data prior to the slight observed change in mixing growth
behavior. The behavior of the model with respect to the early time data indicates
a potential crossover point where the transition from the linear regime is com-
plete. While the 105 g mixing widths appear to continue to increase, the 880 g
width has a trend that levels off which is supported by the camera 3 data.

The mixing region width was extracted from direct imaging of the fireball.
The explosives were configured to have known dominant perturbations. The
presence of initial perturbations had minimal impact on the evolution of the
mixing rate as a function of normalized time. This conclusion is supported by
the consistent fitting parameters calculated for the Mikaelian analytical mixing
model.
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CHAPTER 6

THE FRACTAL BEHAVIOR OF FIREBALL CONTOURS

The goal of this research was to characterize the relationship between the de-
velopment of mixing on the surface of a fireball and the fractal dimension of that
surface. Methodologies developed on gas cloud produced by shotgun primers
were applied to extract the mixing region from explosive tests, and compare the
growth of the mixing region to the change in the computed fractal dimension
of the fireball contact surface. Based on the research conducted, the fractal di-
mension is a function of the mixing width and offers increased insight into the
transition from the linear mixing regime to turbulence.

6.1 Fractal evolution of smooth spheres

The fractal dimension was estimated for the five camera angles for the three
repetitions of the PBXN-113 tests. Figures 6.1 and 6.2 (reproduced Figures 3.5 and
3.7 for clarity) show the fractal evolution of each test. The fractal dimension was
close to unity for much of the early evolution of these tests, but grew towards
a non-unity value as the early smooth fireball expanded and became textured.
The extracted fireball contours from the 0◦ camera returned the most consistent
estimated fractal dimension, as is shown in Figure 6.2. The fractal dimension
from the other cameras had more dispersion, but the underlying trends in the
evolution of the fireball followed those of the center camera.

The smooth tests conducted with C4 are representative of the earlier time
evolution of the fireball without the reflected shock wave interaction.

The evolution of the fractal dimension with respect to the fireball has three
stages, shown in Figure 6.3. In the first stage of evolution, the fireball remains
largely smooth, and returns a small fractal dimension near unity. As the fireball
grows, distinct variations in radius become apparent as mixing begins to occur.
The variations are non-uniform, but likely represent small surface imperfections
in the original smooth sphere. Comparison to the the perturbed case in Figure 6.4
shows that there is minimal difference in the level of surface roughness between
a smooth and perturbed sphere. The initial perturbations impact the structure
and regularity of the fireball contour, but not in a way that changes the relative
roughness of the interface.
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Figure 6.1: All estimated fractal dimensions (top) for 5 camera angles across 3
tests. When (bottom) broken down by test, there is good test to test agreement.
There is high dispersion in the early time, but all cameras return to the same trend
beyond 1 ms.
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Figure 6.2: The fractal dimension of each independent camera broken down by
tests. The 60◦ and 315◦ cameras either exit the field of view or become obstructed,
and are cut short here.
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Figure 6.3: (top) The fractal dimension evolution has three regimes, exemplified
here by the three frames (a, b, c). (a) Initially the fireball is smooth with limited
fractal properties. (b) At the mid-time, the fireball contour has begun to develop
a thickness, but is still a largely smooth curve. (c) As the fractal dimension in-
creases, the mixing width increase is matched by an increase in the complexity of
the contour. Images from the second smooth 880 g test.
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Figure 6.4: (a) The fireball contour of a smooth 880 g charge at t = 0.3 ms is not
significantly different from (b) the fireball contour from a perturbed ( f = 384.6
rad/m) 880 g charge at the same time.

6.2 Fractal evolution of perturbed spheres

The fractal dimension of the fireball from the perturbed spheres was com-
puted from the data taken by camera 2. Figure 6.6 shows the evolution of the
fractal dimension broken down by perturbation for the 105 g charges. At very
early times, the fractal dimension is near unity as the expanding gas cloud is still
largely spherical, and has not yet been significantly perturbed by mixing insta-
bilities on the surface. The evolution of the 880 g charges, shown in Figure 6.7, is
less evident than with the 105 g charges. The smooth and f = 384.6 rad/m tests
do not significantly deviate from unity until the end of the test. The f = 769.2
rad/m tests show a gradual increase similar to that seen in the 105 g tests, but
the growth rate is lower than all but the f = 1574 rad/m tests. Initial charge ge-
ometry and enforced perturbation appears to have limited impact on the initial
fractal dimension, as all perturbed cases followed approximately similar trends.

As discussed with the smooth sphere charges, there is no discernible differ-
ence between the perturbations in terms of fractal evolution. The intermediate
perturbation tests ( f = 384.6 rad/m and f = 785.4 rad/m) retain more structure
from the initial perturbation frequency than the high frequency perturbations as
seen in Figure 6.5, but that structure is not accompanied by an increase or de-
crease in the formation of small turbulent structures within the context of the
mixing region. This is supported by the similar fractal behavior seen between
perturbations.
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Figure 6.5: (a) The intermediate frequency initial perturbations are still strongly
visible as the fireball expands, where (b) the high frequency initial perturbations
have become more multi-modal. Images shown are from 105 g tests 10 and 6,
respectively, taken 0.2 ms after detonation.

6.3 Scaling behavior of fractal evolution

6.3.1 Scaling of the fractal behavior of perturbed spheres

As seen in Figure 6.8, at later scaled times, the fractal dimension begins
rapidly increasing as the surface begins mixing under strong Rayleigh-Taylor
surface instabilities, causing the multiple length scales of turbulence to begin to
form. There is no change to the estimated fractal dimension of the fireball as
the expansion rate changes regimes in the the Wei-Hargather scaling. The fractal
measurement is an indicator of transition of non-linear turbulence in the mix-
ing regime. The point of transition can be identified from Figure 6.8 by locating
the point of divergence in the scaled fractal measurement. The transition point
is not consistent in scaled time, with the fractal dimension of the 880 g spheres
not changing at the same point as the 105 g spheres. The 105 g spheres begin to
increase in fractal dimension between 0.03 and 0.035 scaled time. The high fre-
quency 880 g charges begin to increase in fractal dimension at 0.035 scaled time,
as do some, but not all, of the smooth and medium frequency perturbations. The
880 g tests where the fractal dimension did increase align broadly with the be-
havior exhibited by the 105 g charges.

The incomplete scaling seen in Figure 6.8 indicates that the mass scaling ex-
ponent of 1/3 may not be the proper exponent to collapse this scaling. A simpli-
fied investigation in the scaling exponent relating total explosive energy EHE to
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Figure 6.6: The fractal dimension of reported tests broken down by mass and
perturbation for the perturbed 105 g C4 spheres.
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Figure 6.7: The fractal dimension of reported tests broken down by mass and
perturbation for the perturbed 880 g C4 spheres.
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Figure 6.8: When treated with both scalings, the behavior of the 105 g and 880 g
charges weakly collapse. The red dashed line indicates the transition from the
strong shock to the weak shock regime in Wei-Hargather scaling. The shaded
region indicates shock separation from the fireball
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the time evolution of the fractal dimension was conducted by dividing the time t
by the total energy raised to an arbitrary exponent. Figure 6.9 shows the impact
of varying the exponent between 0.35 and 0.5. The mass of the charge is the only
variation between the 105 g and 880 g C4 charges, so this minimal description is
representative of the impact of varying the scaling on the full scaling. Varying the
exponent appears to improve the alignment of both the inflection point and the
slope between the two masses. More analysis should be performed to identify
the correct exponent, but the value is likely between 0.4 and 0.5. The physical
meaning of this exponent is not explored in this work.

Figure 6.9: Variation the scaling exponent on the explosive energy term between
and exponent 0.35 and 0.5.
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The addition of the fractal dimension from the PBXN-113 tests reinforces that
the fractal dimension of the contour does not scale with shock scaling criteria.
Figure 6.10 shows the PBXN-113 tests following a slow but consistent increase
in fractal dimension. As will be further discussed in the next section, the fractal
dimension is tied to evolution of mixing region decoupling from the primary
shock, so scaling with these criteria was not expected.

Figure 6.10: The addition of the (blue) PBXN-113 tests to the (red) perturbed
sphere test.

6.4 Fractal dimension as a function of mixing width

The scaling of the fractal Hausdorff dimension with standard explosive scal-
ing laws during early time evolution is a step towards understanding how the
evolution of the explosively driven product gases mix and combust with the am-
bient air. The rapid expansion of the detonation products drives both the shock
wave formation and the transition to turbulent mixing on the contact surface, so
before shock separation from the fireball the two processes linked. The fractal
behavior appears to be decoupled from the initial surface perturbations of the
charges, as the fractal trends developed at the same rate within error regardless
of the charge geometry. Figures 6.11 and 6.12 show the evolution of the fractal
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dimension with respect to unscaled mixing region width for the 105 g and 880 g
charges, respectively. Uncertainties for the 105 g charge mixing region width
are small enough to allow the identification of data trends. Conclusions drawn
from the 880 g charges are limited due to the very high uncertainty in the mix-
ing width estimates, but the different tests do appear to be tracking a similar
trend to the 105 g charges. When plotted as a function of the normalized mix-
ing width h∗ = h/R0, shown in Figure 6.13 for perturbed spheres, the evolution
of the fractal dimension is seen to be weakly linearly linked to the evolution of
the mixing region width. As the fireball surface transitions from initial rapid ex-
pansion towards a regime dominated by surface mixing, the fractal dimension of
that surface increases. The increase in fractal dimension is mirrored by a change
in the growth rate of the mixing region. The addition of the PBXN-113 data plot-
ted against normalized mixing width in Figure 6.14 reinforces the trend. As the
relative width of the mixing region grows, the ratio of contact surface length to
circumference also grows, driving an increase in the fractal dimension. The evo-
lution makes sense both geometrically, in terms of the projected outline of an in-
creasingly complex sphere, as well as physically, in terms of the barolinic torque
being applied to the greater angle of a the perturbation waves as the relative
thickness increases.

The fractal dimension of early time fireball can be consistently measured
from multiple viewing angles of the same detonation event. Applying shock scal-
ing criteria to the measured fractal dimension does not cause a collapse between
tests with different explosives masses (105 g versus 880 g), or with different ex-
plosives (C4 versus PBXN-113). Scaling the fractal dimension by the mean radius
normalized mixing width however, showed a noisy but effective collapse.
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Figure 6.11: The evolution of the fractal dimension for 105 g charges as a func-
tion of unscaled mixing region width (top) by perturbation. When (bottom) all
perturbations are overlaid, it is evident that the fractal dimension is a function of
mixing region width.
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Figure 6.12: The evolution of the fractal dimension for 880 g charges as a function
of unscaled mixing region width (top) by perturbation. Overlaying (bottom) all
perturbations on the same axes shows a weak trend.
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Figure 6.13: The fractal dimension of both smooth and perturbed spheres as a
function of the normalized mixing region width.
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Figure 6.14: The fractal dimension of the (red) perturbed spheres and (blue)
PBXN-113 tests.
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CHAPTER 7

CONCLUSIONS

The growth and evolution of the interface between detonation products and
ambient air was measured for experiments with varying charge mass, explosive
formulation, and initial geometry. The explosive charges spanned over three or-
ders of magnitude in mass variation and a factor of two in specific explosive en-
ergy variation. The resulting expansion of the detonation gases was found to be
repeatable and scalable. Classical perturbation evolution models for the growth
of the mixing region, with the addition of an initial growth rate term, were fit
to experimental data. The resulting form of the models shows that the Atwood
number variation with time and initial growth terms are critical to consider for
the early-time expansion across varied experimental setups. The interface con-
tours are ultimately found to have a time-varying fractal dimension, which scales
with the mixing region growth, as the surface evolves from a smooth perturba-
tion towards fully-developed turbulence.

7.1 Validity of analytical mixing growth models for real explosives

Explosive charges with initial perturbations ranging from h0/λ = 0.061 to
h0/λ = 0.25 were studied here. These values were chosen because they strad-
dled the standard validity criteria for analytical models of linearized perturba-
tion growth, with smaller perturbations expected to follow the linearized model
and larger ones potentially behaving differently. The breakdown of linearized
models is associated with the flow transitioning towards turbulent mixing, and
is expected to cause a change in the growth rate of the mixing region. The model
for growth of a perturbation on a spherical surface was found to capture the be-
havior of early mixing width results, but not to capture the plateauing of the mix-
ing region width. The values of the geometric constant c for the early times are
indicative of the complex transitions in the dominant instabilities on the surface
of a fireball, as the over expansion of the detonation products causes an inver-
sion in the relative densities at the contact surface. The fit can be improved by
modulating the initial contact surface growth rate using the k term. However, the
addition of this term does not improve the predictive capabilities of the model
into the weak non-linear regime.
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The impact of several treatments of the Atwood number on the model was
studied. Modeling the Atwood number as varying with time improved the agree-
ment of the model with the data. Calculating the Atwood number with respect to
the density of the air immediately behind the shock wave resulted in underesti-
mation of the mixing width when the model was initialized from pre-detonation
conditions, but good agreement was found when initial conditions were taken
from early experimental data. The good agreement indicates that the large per-
turbations are still dominating the evolution of mixing regime. The change in
model slope near the end of the data further indicates a change in the length
scales driving the mixing evolution towards smaller scales.

The initial perturbation of the explosive charge did not impact the agreement
between the analytical model and the measured mixing width. The lack of vari-
ation between perturbed and unperturbed mixing regions is in agreement with
numerical analyses performed on idealized one dimensional models [31, 32].

7.2 Application of shock scalings to non-shock phenomena

The behavior of the expanding fireball immediately post detonation is closely
linked to the formation and behavior of the shock wave. However, the parame-
ters that dominate the expansion and mixing of the fireball are not necessarily the
same parameters that govern the shock wave. The initial expansion of the fire-
ball appears to scale reliably with the same scaling criteria as used for shock wave
propagation. The limitations of shock scaling become evident as the fireball tran-
sitions from momentum based expansion regime to a viscosity dominated mixing
regime.

The effectiveness of a shock scaling for describing the evolution of the non-
shock phenomena associated with the fireball is dependent on the time scale. In
the early evolution of the fireball, it is effectively attached to the shock, and ex-
pands at a comparable rate. For the duration of the early linear perturbation
growth regime, the fireball is governed by similar parameters as the shock. The
initial impulsive acceleration of detonation is determined by explosive energy,
and the drag based deceleration is dependent upon atmospheric conditions. Ini-
tial density ratios are determined by explosive density and ambient conditions,
so the the Atwood number is constant early. Once the fireball has detached from
the shock however, bulk fireball behavior still appears to obey shock scaling for
turbulent mixing, but the behavior of mixing on the surface of the fireball evolves
through mechanisms not scaled by the shock scaling.

The breadth of scaled times covered by this effort is too narrow to draw con-
clusions about the effectiveness of shock scaling after shock detachment from the
fireball. The behavior observed in Figure 4.8 is indicative of potentially asymp-
totic behavior as the gram scale fireballs stabilized, but without additional fireball
data extending out to those scaled times, no definitive conclusion can be drawn.
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7.3 The fractal dimension as a metric for mixing growth

The fractal dimension is ultimately representative of the development of
structures on the surface of the fireball that are self similar through multiple
scales. The connection to turbulence and mixing through the diffusion of flow
scalar properties indicates that at a base level, turbulent flows should have fractal
properties. A digital image of a fireball identifies a region of high optical density
that can be taken to be representative of the boundary between high temperature
detonation products and ambient air. The results in Chapter 4 demonstrated that
a fireball contour can be extracted that behaves as is expected based on fireball
scaling in the literature. The behavior of the mixing region aligns with the behav-
ior of predictive analytical models, leading to the conclusion that the extracted
fireball contour is representative of the mixing behavior on the contact surface.

The fractal dimension grows as a function of the mixing width because the
area covered by the boundary increases relative to the smooth surface idealiza-
tion of the fireball determined from its average radius. This relationship will be
true until either the scale of newly forming turbulent structures is below the re-
solving power of the camera, or the development of three-dimensionality on the
surface occludes the tracking of the fireball contour. Based on these criteria, the
fractal dimension is an enhancement of the mixing width measurement for the
flow regime immediately after the linear regime. The initially smooth surface of
the fireball results in a fractal dimension near unity primarily driven by an in-
crease in h. As mixing width growth rate transitions away from the exponential
growth of the linear models, the non-linearities of the flow cause an increase in
contact surface complexity, which corresponds to an increase in contact surface
length in the same projected area. This increase in length per area translates to an
increased fractal dimension. The optimal application for the direct imaging frac-
tal diagnostic is this early transition time. Because the measurement of the fractal
dimension is an imaging based diagnostic that does not place requirements on the
experimental configuration, it can be calculated for archival test data to identify
changes in the mixing regime on the fireball surface. Higher imaging resolution
can improve the quality and capacity of this measurement up to a point, but there
is an upper limit to effective application time.

The lower bound is related to the transition away from the linear perturba-
tion growth regime, as identified by analytical model effectiveness. The analytical
models for mixing region growth are ultimately assuming that the fireball surface
can be accurately described using a spherical harmonic Yn, and that the growth of
the harmonic amplitude η accurately describes the growth of the mixing region
as a whole. These models are therefore more effective when describing a flow
with a smooth contact surface well described by the spherical harmonics. Once
these models break down, the previously discussed increased complexity of the
contact surface lends itself to being described by a fractal. This is a useful distinc-
tion for visual characterization of a fireballs evolution, and is a principal result of
this work. The flow characteristics that contribute to a mixing region becoming
non-linear and turbulent also contribute to the increase in the fractal dimension.
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Therefore, a marked change in the fractal dimension of a flow may be used as an
indicator that a linear analytical model will no longer be appropriate.

The upper bound for application time is driven by the size of initial pertur-
bations on the surface of the explosive, the presence of symmetry in the initial
charge, and the orientation of any symmetry features relative to the diagnostic
camera. In future work, a rigorous exploration of this upper bound may be con-
ducted using simulations to track fireball isosurfaces and identify when occlusion
becomes a substantial contributor to the estimated fireball contour.

The fractal dimension calculated from extracted fireball contours shows that
the early time fireball is largely non-fractal. The rapid expansion rate and initial
dominance of the gas cloud momentum result in a relatively smooth fireball sur-
face. As the fireball slows, viscous affects accentuate the differences in velocity
on the surface to drive the formation of turbulent structures that are visible on
the scale of a digital image. This increases the width of the mixing region while
simultaneously increasing the number of length scales which exist on the fire-
ball surface, increasing the fractal dimension of the fireball contour. At a certain
point, the complexity of the surface causes the projection of the surface seen by
a camera to no longer be representative of the boundary between the detonation
products and the ambient air. Once this point is reached the fractal dimension of
the contour becomes disconnected from the fluid mechanics of the fireball.

7.4 Future work

A first next step would be the establishment of a relationship between the
mass of the explosive charge, pixel resolution of the recording camera, and ex-
pected fractal offset. As was seen with applying the box counting methodology
to known fractals, the method tends to systematically over or under predict the
fractal dimension. This is resolvable for mathematically defined fractals, but con-
necting the characteristics of a given data set to the expected fractal offset would
enhance the precision of the diagnostic.

The characterization of the fractal dimension evolution has relied on direct
imaging to extract fireball contours from experimental data. An exploration into
the upper bound of the validity range could be done with computational studies
on the evolution of specific isosurfaces of temperature or concentration in a fire-
ball. Similarly, the lower bound of camera resolution could be more effectively
explored through simulated cameras on a repeatable surface. Simulation efforts
would also enable refinement of assumptions built into the analytical models
such as evenly expanding density gradient.

A second, parallel thrust could be the development of more robust experi-
mental techniques for the extraction of a mixing width in a full blast environment.
Experiments with hemispherical explosive charges detonated above a transpar-
ent surface, similar to the variable gas confinement experiments conducted for
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this work, could provide experimental validation to the computational identi-
fication of more rigorously defined isosurfaces. Surface registration and tomo-
graphic techniques, while eventually excluded from the present effort, remain a
potential tool for removing the requirement for the assumptions of dimensional
symmetry for utilizing the two-dimensional contour slices of the full surfaces.

Further refinement of the testing methodology used to generate the per-
turbed C4 spheres will allow a deeper exploration of the real effects of repeatable
surface perturbations on the evolution of fireball mixing. Machined molds would
increase the available resolution for the forming processing, allowing the creation
of smaller and higher fidelity perturbations. Additionally, perturbations without
an axis of rotational symmetry were not explored in the current effort and would
provide additional insight into how the early time surface growth is related to
the late time mixing on the surface.
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APPENDIX B

RADIUS DATA AND CHARACTERISTICS LENGTHS

B.1 Characteristic lengths and times

The characteristic lengths and times were calculated using the Wei-Hargather
scaling [96]. The scaled radius was computed by:

Rc =

(
EHE

ρ0C2
0

)1/3

(B.1)

The characteristic time was computed by:

tc =
Rc

C0
(B.2)

For example, to calculate the scaled time for a 105 g C4 test, the total explosive
energy EHE is computed from the explosive mass mHE and specific explosive
energy eHE.

EHE = (0.105 kg)(5.86 MJ/kg) (B.3)

= 0.615 MJ (B.4)

Air density ρ0 is calculated using equations for moist air from Davis [116]. For the
example test, the temperature was 21.4◦ C, the air pressure was 821.2 hPa, and
the relative humidity was 42.3%. This gives an air density of ρ0 = 0.968 kg/m3.
The local speed of sound is calculated using:

a0 =
√

γRT0 (B.5)

= 343.8 m/s (B.6)

The characteristic length and time is then calculated.

Rc =

(
(0.615 MJ)

(0.968 kg/m3)(343.8 m/s)2

)1/3

(B.7)

= 1.75 m (B.8)

tc =
(1.75 m)

(343.8 m/s)
(B.9)

= 0.0051 s (B.10)
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The characteristic values varied minimally between individual tests of a series.
All characteristic values used are tabulated in Tables B.1, B.2, and B.3.

Table B.1: Characteristic lengths and times for PBXN-113 tests
Test 1 Test 2 Test 3

lc 2.907 2.907 2.907
tc 0.0083 0.0083 0.0083

Table B.2: Characteristic lengths and times for perturbed C4 tests
105 g 880 g

lc tc lc tc
Test 1 1.748 0.0050 Test 1 3.507 0.0101
Test 2 1.749 0.0050 Test 2 3.507 0.0101
Test 3 1.749 0.0050 Test 3 3.502 0.0101
Test 4 1.749 0.0050 Test 4 3.502 0.0101
Test 5 1.749 0.0050 Test 5 3.503 0.0101
Test 6 1.750 0.0051 Test 6 3.504 0.0102
Test 7 1.751 0.0051 Test 7 3.505 0.0100
Test 8 1.751 0.0051 Test 8 3.504 0.0100
Test 9 1.752 0.0051 Test 9 3.506 0.0100
Test 10 1.752 0.0051
Test 11 1.752 0.0051
Test 12 1.752 0.0050

Table B.3: Characteristic lengths and times for gram scale tests
lc tc

Test 1 0.379 0.0011
Test 2 0.379 0.0011
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APPENDIX C

PERMISSIONS

A large portion of Section 5.1.1 and Section 5.1.1 is reprinted from Christian
Peterson, Veronica Espinoza, and Michael Hargather. Experimental evolution
of explosively driven gas clouds in varying confinment, Experiments in Fluids,
63(12):1-11, 2022, Reproduced with permission from Springer Nature.
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