Vertical Orientation of Short Wires Using a Monolayer of Spheres

The 26 th Rio Grande
Symposium on Advanced Materials

Idil Ayan and Paul A. Fuierer

New Mexico Institute of Mining and Technology, Socorro, NM 87801

Introduction \& Motivation

Vertically aligned one-dimensional (1D) architectures including nanotubes, nanorods, and nanowhiskers have been of growing interest due o potential applications in sensor, memory, and photovoltaic devices. In dye sensitized solar cells (DSSCs), for example, TiO 2 nanotubes can provid and and meen possibla to grow nanotubes on transparent conducting oxide it has with the lengths needed for high-efficiency (tens of micrometers), and large areas desired for economy. In this case vertical alignment of acicular micro particles may be preferable using a top down approach

We propose to utilize a microsphere lithography strategy to build 1D hierarchical structures. A closely packed monolayer of glass microspheres can accommodate "stand-up" texture of acicular particles by occupying the interstitial sites. To our knowledge, the interaction between spheres and investigate the tendency of short (mm -size) wires to orient vertically in a monolayer of spheres using simple shaking action. This is a statistical with the intention of identifying geometric matching of sphese and wire sizes.

Experimental Procedure

Plastic spheres, 8 and 6 mm diameter, and glass spheres, 3 mm and 2 mm , were used to create four distinct, close - packed monolayer models inside hexagonal-shaped, flat-bottomed containers.

Figure 2. Monolayer- 3 mm spheres

Figure 3. Vibration apparatus

Metallic needles with various diameters and lengths were chosen based on interstitial diameters. Each experiment used 50 needles and was ron olly counted Thriee replicates were performed and the experimental data was analyzed with full factorial design (two factors, two or more than two levels) in Minitab with a confidence interval of 95% $\alpha=0.05$.

Table 1. Needle size vs. sphere diameter

Figure 4. Orientation of wires (a) 3 mm spheres (b) 2 mm spheres

Conclusions and Plans

The max. orientation window or "Sweet spot" decreases in size with decreasing sphere and particle size
Maximum orientation for macro particles appears to occur when $L_{\text {needl }}$ $=\emptyset_{\text {sphere }}$. Optimal $\emptyset_{\text {needle }} / \emptyset_{\text {interstitial }}$ varies in the range of $0.25-0.5$. Deviation from expected behavior occurs at $\varnothing_{\text {sphere }}=2 \mathrm{~mm}$, perhaps due to dominating surface forces over gravitational forces.
Experiments are underway to produce titanate-based acicular particles in the sub-mm to micron size range for similar experiments with microspheres in order to determine the limits of this approach.

Ultimately, we will build and test DSSCs with wide bandgap anodes with this unique architecture

Acknowledgements

This work is supported, in part, by NSF grant \# 1108466
 Figures 5 - 8. Graphs representing upright needle orientaiion. (a) Cuntiour plot as a anct
relative to monolayer sphere and interstitial size (b) Line plot as a function of needle size.

