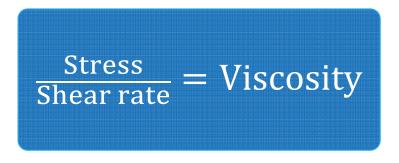


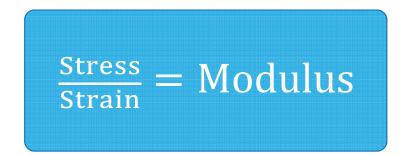
Course Outline

- Basics in Rheology Theory Oscillation
- TA Rheometers
 - Instrumentation
 - Choosing a Geometry
 - Calibrations
- Flow Tests
 - Viscosity
 - Setting up Flow Tests

- Linear Viscoelasticity
- Setting up Oscillation Tests
- Transient Testing
- Applications of Rheology
 - Polymers
 - Structured Fluids
 - Advanced Accessories

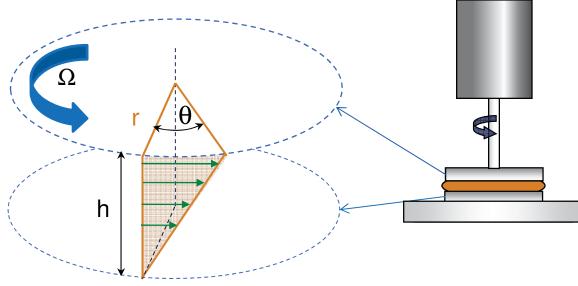
Basics in Rheology Theory


Rheology: An Introduction



Rheology: An Introduction

- Rheology is the science of flow and deformation of matter
 - The word 'Rheology' was coined in the 1920s by Professor E C Bingham at Lafayette College in Indiana
- Flow is a special case of deformation
- The relationship between stress and deformation is a property of the material



Simple Steady Shear Flow

Torsion Flow in Parallel Plates

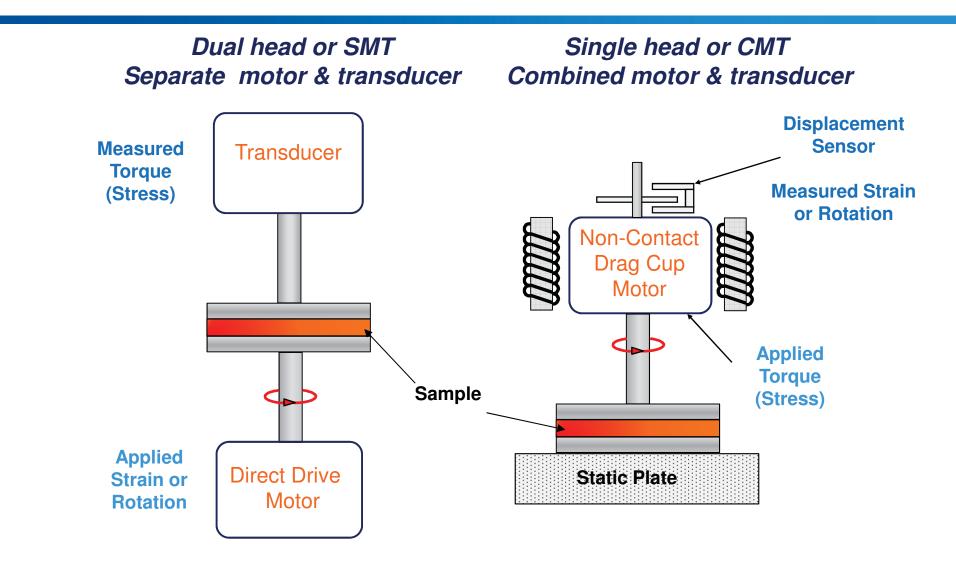
$$\label{eq:relation} \begin{split} r &= \text{plate radius} \\ h &= \text{distance between plates} \\ M &= \text{torque } (\mu\text{N.m}) \\ \theta &= \text{Angular motor deflection (radians)} \\ \Omega &= \text{Motor angular velocity (rad/s)} \end{split}$$

Stress (σ) $\sigma = \frac{2}{\pi r^3} \times M$ Strain (γ) $\gamma = \frac{r}{h} \times \theta$ Strain rate ($\dot{\gamma}$) $\dot{\gamma} = \frac{r}{h} \times \Omega$

TA Instruments Rheometers

Rotational Rheometers at TA

ARES G2


Controlled Strain Dual Head SMT DHR

Controlled Stress Single Head CMT

Rotational Rheometer Designs

Note: With computer feedback, DHR and AR can work in controlled strain/shear rate, and ARES can work in controlled stress.

What does a Rheometer do?

- Rheometer an instrument that measures both viscosity and viscoelasticity of fluids, semi-solids and solids
- It can provide information about the material's:
 - Viscosity defined as a material's resistance to deformation and is a function of shear rate or stress, with time and temperature dependence
 - Viscoelasticity is a property of a material that exhibits both viscous and elastic character. Measurements of G', G", tan δ with respect to time, temperature, frequency and stress/strain are important for characterization.
- A Rheometer works simply by relating a materials property from how hard it's being pushed, to how far it moves
 - by commanding torque (stress) and measuring angular displacement (strain)
 - by commanding angular displacement (strain) and measuring torque (stress)

From the definition of rheology,

the science of flow and deformation of matter or the study of <u>stress</u> (Force / Area) – <u>deformation</u> (Strain or Strain rate) relationships.

Fundamentally a rotational rheometer will apply or measure:

Torque (Force)
 Angular Displacement
 Angular Velocity

- In a rheometer, the stress is calculated from the torque.
- The formula for stress is: $\sigma = M \times K_{\sigma}$ Where $\sigma =$ Stress (Pa or Dyne/cm²)
 - $M = torque in N \cdot m or gm \cdot cm$

 K_{σ} = Stress Constant

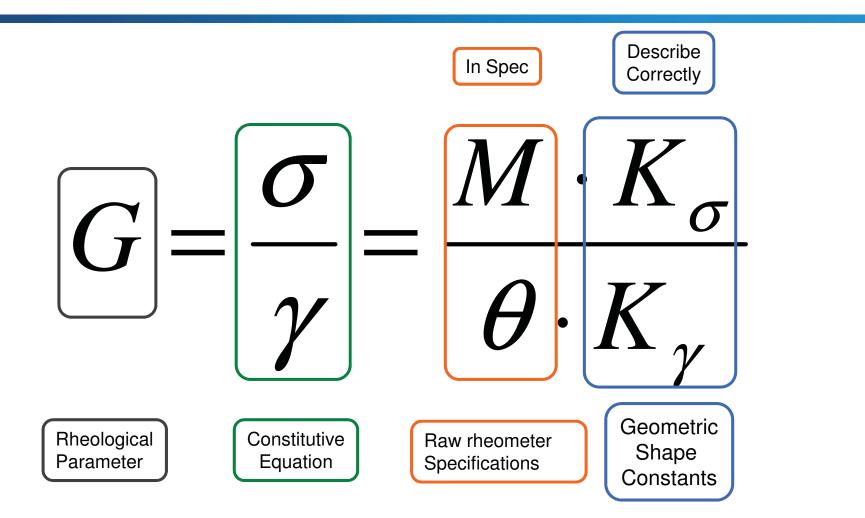
• The stress constant, K_{σ} , is a geometry dependent factor

Angular Displacement \rightarrow Shear Strain

- In a SMT Rheometer, the angular displacement is directly applied by a motor.
- The formula for strain is: $\gamma = K_{\gamma} \times \theta$

 $\%\gamma = \gamma \times 100$

where $\gamma = Strain$


 κ_{γ} = Strain Constant

 θ = Angular motor deflection (radians)

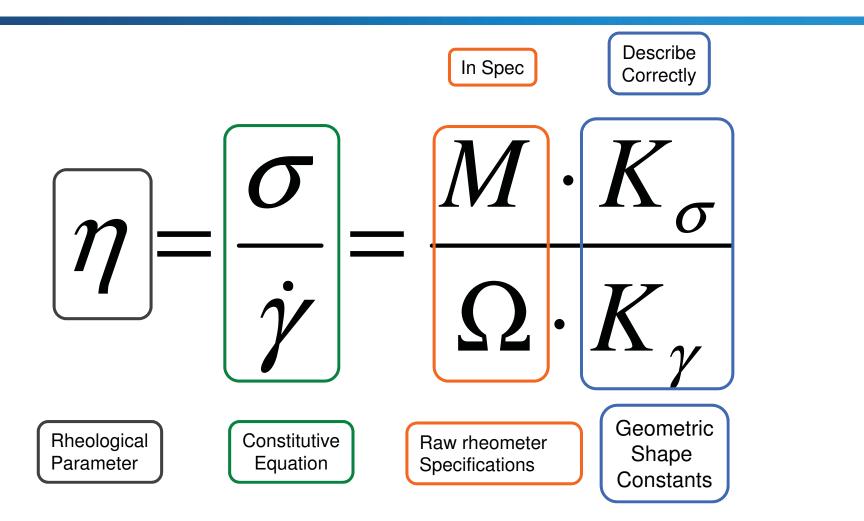
- The strain constant, K_{γ} , is a geometry dependent factor

Equation for Modulus

The equation of motion and other relationships have been used to determine the appropriate equations to convert machine parameters (torque, angular velocity, and angular displacement) to rheological parameters.

Angular Velocity \rightarrow Shear Rate

- In a SMT rheometer, the angular speed is directly controlled by the motor).
- The formula for shear rate is:


 $\dot{\gamma} = K_{\gamma} \times \Omega$

where $\dot{\gamma}$ = Shear rate K_{γ} = Strain Constant Ω = Motor angular velocity in rad/sec

- The strain constant, K_{γ} , is a geometry dependent factor

Equation for Viscosity

The equation of motion and other relationships have been used to determine the appropriate equations to convert machine parameters (torque, angular velocity, and angular displacement) to rheological parameters.

Discovery Hybrid Rheometer Specifications

Specification	HR-3	HR-2	HR-1
Bearing Type, Thrust	Magnetic	Magnetic	Magnetic
Bearing Type, Radial	Porous Carbon	Porous Carbon	Porous Carbon
Motor Design	Drag Cup	Drag Cup	Drag Cup
Minimum Torque (nN.m) Oscillation	0.5	2	10
Minimum Torque (nN.m) Steady Shear	5	10	20
Maximum Torque (mN.m)	200	200	150
Torque Resolution (nN.m)	0.05	0.1	0.1
Minimum Frequency (Hz)	1.0E-07	1.0E-07	1.0E-07
Maximum Frequency (Hz)	100	100	100
Minimum Angular Velocity (rad/s)	0	0	0
Maximum Angular Velocity (rad/s)	300	300	300
Displacement Transducer	Optical encoder	Optical encoder	Optical encoder
Optical Encoder Dual Reader	Standard	N/A	N/A
Displacement Resolution (nrad)	2	10	10
Step Time, Strain (ms)	15	15	15
Step Time, Rate (ms)	5	5	5
Normal/Axial Force Transducer	FRT	FRT	FRT
Maximum Normal Force (N)	50	50	50
Normal Force Sensitivity (N)	0.005	0.005	0.01
Normal Force Resolution (mN)	0.5	0.5	1

DHR - DMA mode (optional)		
Motor Control	FRT	
Minimum Force (N) Oscillation	0.1	
Maximum Axial Force (N)	50	
Minimum Displacement (µm) Oscillation	1.0	
Maximum Displacement (µm) Oscillation	100	
Displacement Resolution (nm)	10	
Axial Frequency Range (Hz)	1 x 10 ⁻⁵ to 16	

ARES-G2 Rheometer Specifications

Force/Torque Rebalance Transducer (Sample Stress)		
Transducer Type	Force/Torque Rebalance	
Transducer Torque Motor	Brushless DC	
Transducer Normal/Axial Motor	Brushless DC	
Minimum Torque (µN.m) Oscillation	0.05	
Minimum Torque (µN.m) Steady Shear	0.1	
Maximum Torque (mN.m)	200	
Torque Resolution (nN.m)	1	
Transducer Normal/Axial Force Range (N)	0.001 to 20	
Transducer Bearing	Groove Compensated Air	

Driver Motor (Sample Deformation)		
Maximum Motor Torque (mN.m)	800	
Motor Design	Brushless DC	
Motor Bearing	Jeweled Air, Sapphire	
Displacement Control/ Sensing	Optical Encoder	
Strain Resolution (µrad)	0.04	
Minimum Angular Displacement (µrad)	1	
Oscillation		
Maximum Angular Displacement (µrad)	Unlimited	
Steady Shear		
Angular Velocity Range (rad/s)	1x 10 ⁻⁶ to 300	
Angular Frequency Range (rad/s)	1x 10 ⁻⁷ to 628	
Step Change, Velocity (ms)	5	
Step Change, Strain (ms)	10	

Orthogonal Superposition (OSP) and DMA modes		
Motor Control	FRT	
Minimum Transducer Force (N) Oscillation	0.001	
Maximum Transducer Force (N)	20	
Minimum Displacement (µm) Oscillation	0.5	
Maximum Displacement (µm) Oscillation	50	
Displacement Resolution (nm)	10	
Axial Frequency Range (Hz)	1 x 10 ⁻⁵ to 16	

Geometry Options

Very Low

to Medium Viscosity

Cone and

Plate

Very Low to High Viscosity

Parallel Plate

Very Low Viscosity to Soft Solids

Torsion Rectangular

Solids

Choosing a Geometry Size

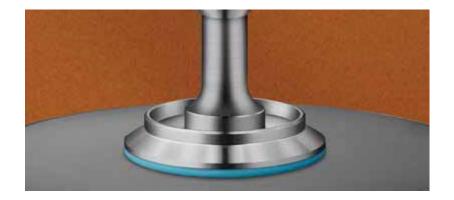
- Assess the 'viscosity' of your sample
- When a variety of cones and plates are available, select diameter appropriate for viscosity of sample
 - Low viscosity (milk) 60mm geometry
 - Medium viscosity (honey) 40mm geometry
 - High viscosity (caramel) 20 or 25mm geometry
- Examine data in terms of absolute instrument variables torque/displacement/speed and modify geometry choice to move into optimum working range
- You may need to reconsider your selection after the first run!

Parallel Plate

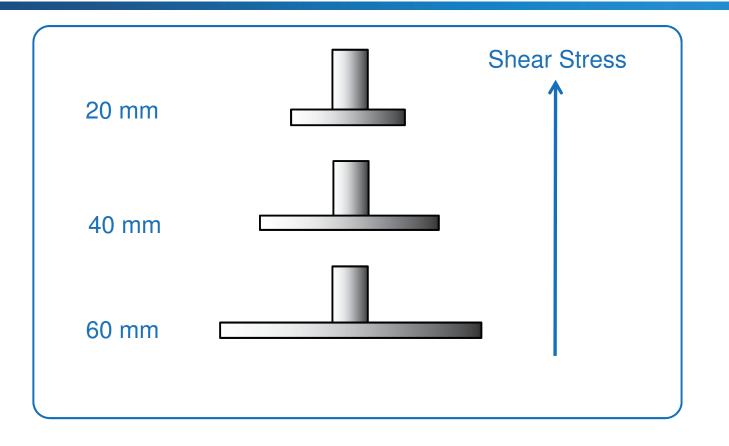
Diameter (2·r)

Strain Constant: $K_{\gamma} = \frac{r}{h}$

(to convert angular velocity, rad/sec, to shear rate, 1/sec, at the edge or angular displacement, radians, to shear strain (unitless) at the edge. The radius, r, and the gap, h, are expressed in meters)

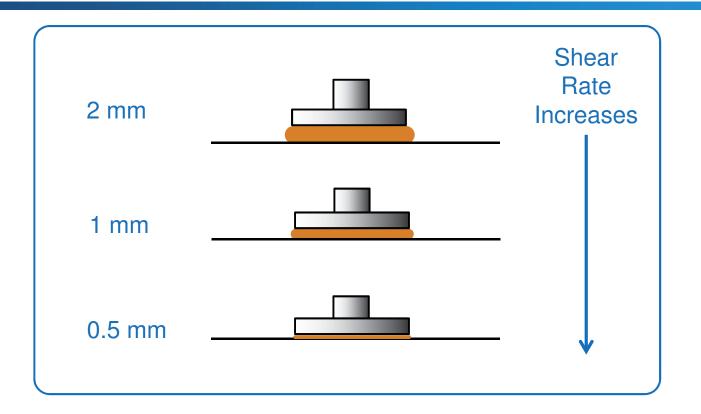

(to convert torque, $N \cdot m$, to shear stress at the edge, Pa, for Newtonian fluids. The radius, r, is expressed in meters)

When to use Parallel Plates


- Low/Medium/High Viscosity Liquids
- Soft Solids/Gels
- Thermosetting materials
- Samples with large particles

- Samples with long relaxation time
- Temperature Ramps/ Sweeps
- Materials that may slip
 - Crosshatched or Sandblasted plates
- Small sample volume

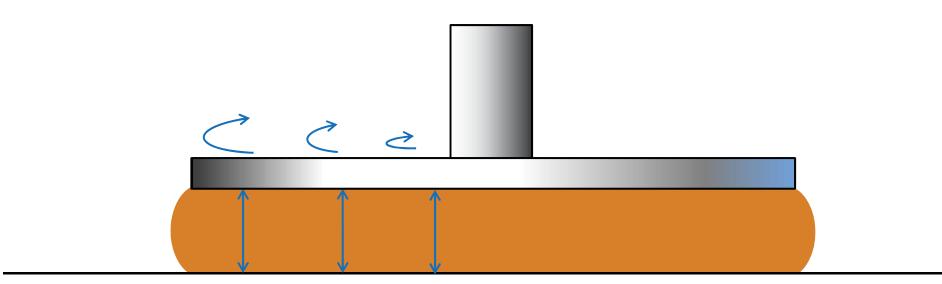
Plate Diameters



As diameter decreases, shear stress increases

$$\sigma = M \frac{2}{\pi r^2}$$

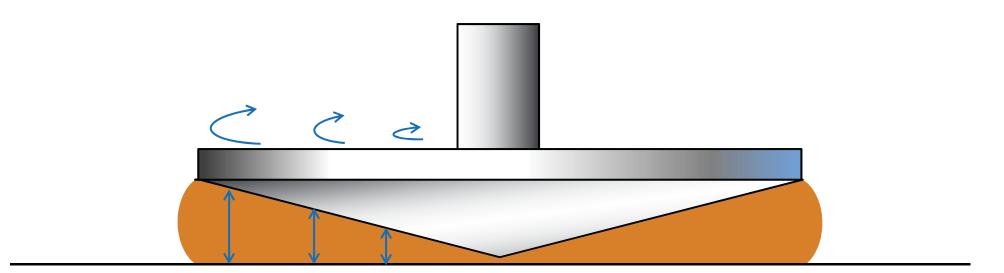
Plate Gaps


As gap height decreases, shear rate increases

 $\dot{\gamma} = \Omega \frac{r}{h}$

Effective Shear Rate varies across a Parallel Plate

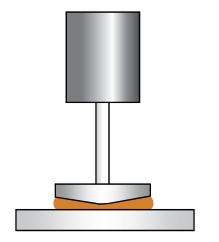
 For a given angle of deformation, there is a greater arc of deformation at the edge of the plate than at the center


 $\gamma = \frac{dx}{h}$

dx increases further from the center, *h* stays constant

Shear Rate is Normalized across a Cone

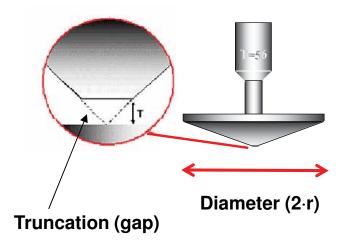
 The cone shape produces a smaller gap height closer to inside, so the shear on the sample is constant



$$\gamma = \frac{dx}{h}$$

h increases proportionally to dx, γ is uniform

Cone and Plate

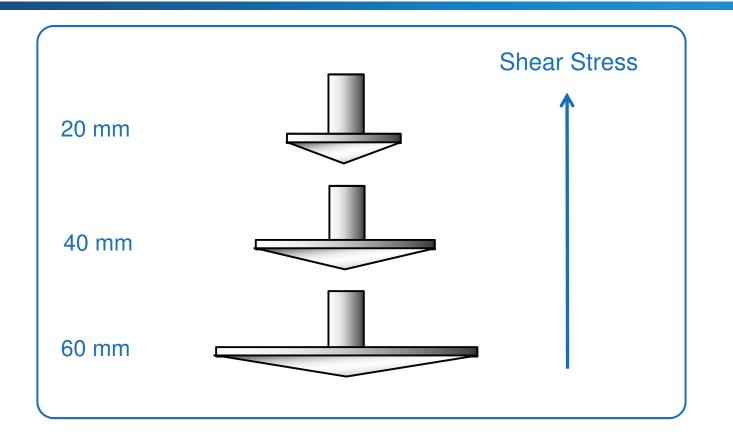


Strain Constant: $K_{\gamma} = \frac{1}{\beta}$

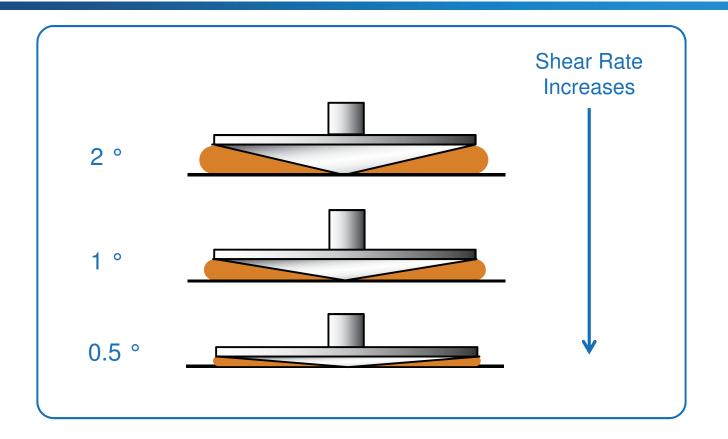
(to convert angular velocity, rad/sec, to shear rate. 1/sec, or angular displacement, radians, to shear strain, which is unit less. The angle, β , is expressed in radians)

Stress Constant:
$$K_{\sigma} = \frac{3}{2\pi r^3}$$

(to convert torque, $N \cdot m$, to shear stress, Pa. The radius, r, is expressed in meters)

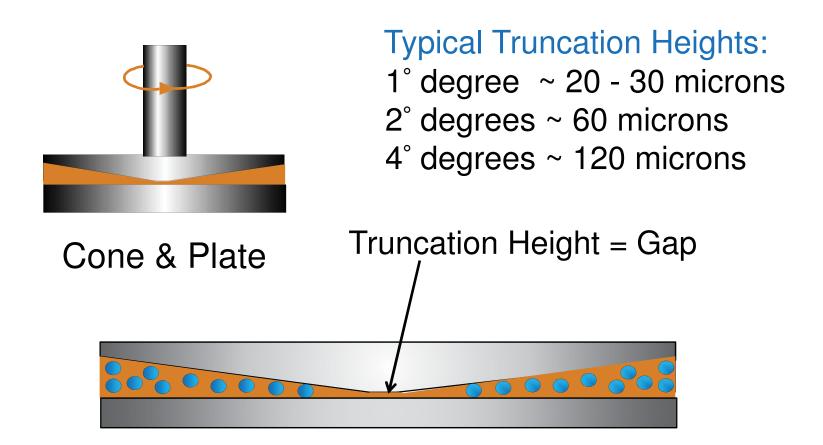

When to use Cone and Plate

- Very Low to High Viscosity Liquids
- High Shear Rate measurements
- Normal Stress Growth
- Unfilled Samples
- Isothermal Tests
- Small Sample Volume


Cone Diameters

As diameter decreases, shear stress increases $\sigma = M \frac{3}{2\pi r^3}$

Cone Angles

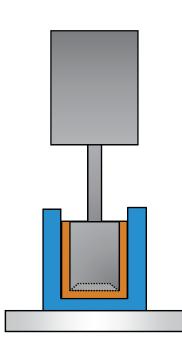


As cone angle decreases, shear rate increases

 $\dot{\gamma} = \Omega \frac{1}{\beta}$

Limitations of Cone and Plate

Gap must be > or = 10 [particle size]!!



Correct Sample Loading

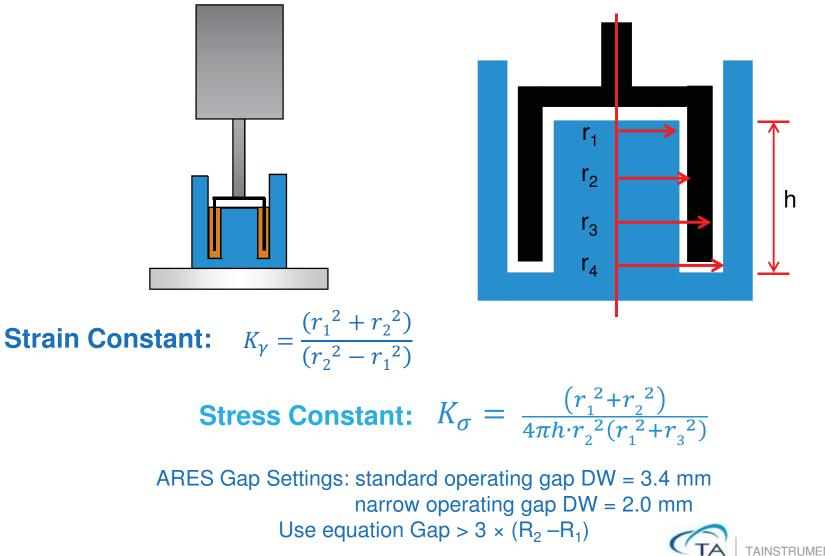
Concentric Cylinder

Strain Constant:

$$K_{\gamma} = \frac{r_1^2 + r_2^2}{r_2^2 r_1^2}$$

(to convert angular velocity, rad/sec, to shear rate, 1/sec, or angular displacement, radians, to shear strain (unit less). The radii, r_1 (inner) and r_2 (outer), are expressed in meters)

Stress Constant:
$$K_{\sigma} = \frac{1}{4\pi l} \left[\frac{r_1^2 + r_2^2}{r_2^2 r_1^2} \right]^*$$


(to convert torque, $N \cdot m$, to shear stress, Pa. The bob length, I, and the radius, r, are expressed in meters)

Double Wall

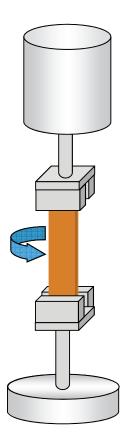
Use for very low viscosity systems (<1 mPas)

TAINSTRUMENTS.COM

When to Use Concentric Cylinders

- Low to Medium Viscosity Liquids
- Unstable Dispersions and Slurries
- Minimize Effects of Evaporation
- Weakly Structured Samples (Vane)
- High Shear Rates

Peltier Concentric Cylinders



Concentric Cylinder Cup and Rotor Compatibility Chart

Cup/Rotor	DIN	Recessed End	Starch Impeller	Vane	Wide Gap Vane	Double Gap	Helical Rotor
Standard (rad= 15 mm)							
Large Diameter (rad= 22 mm)	•		•				•
Starch (rad= 18.5 mm)			•		•		•
Grooved					•		
Double Gap				1.1		•	
Helical (rad= 17 mm)							

Torsion Rectangular

$$K_{\gamma} = \frac{t}{l \left[1 - 0.378 \left(\frac{t}{w}\right)^2\right]}$$

$$K_{\tau} = \frac{\left(3 + \frac{1.8}{w}\right)}{\left(w \cdot t^2\right)}$$

Advantages:

- High modulus samples
- Small temperature gradient
- Simple to prepare

w = Width I = Length t = Thickness

Disadvantages:

 No pure Torsion mode for high strains

Torsion cylindrical also available

Torsion and DMA Measurements

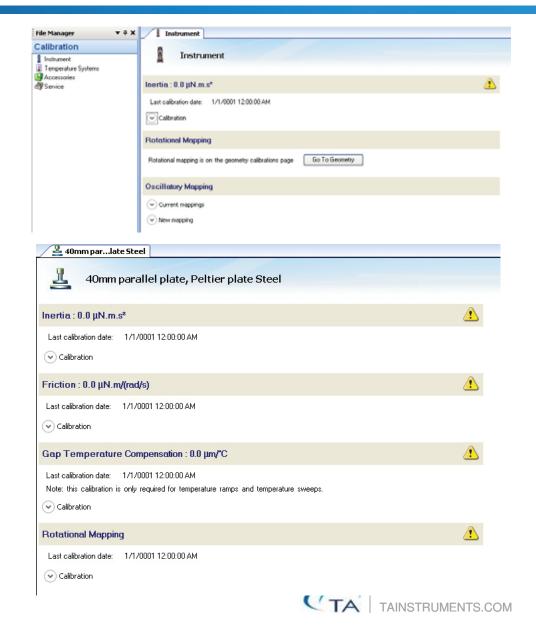
- Torsion and DMA geometries allow solid samples to be characterized in a temperature controlled environment
 - Torsion measures G', G", and Tan δ
 - DMA measures E', E", and Tan δ
 - ARES G2 DMA is standard function (50 μm amplitude)
 - DMA is an optional DHR function (100 μm amplitude)

Rectangular and cylindrical torsion

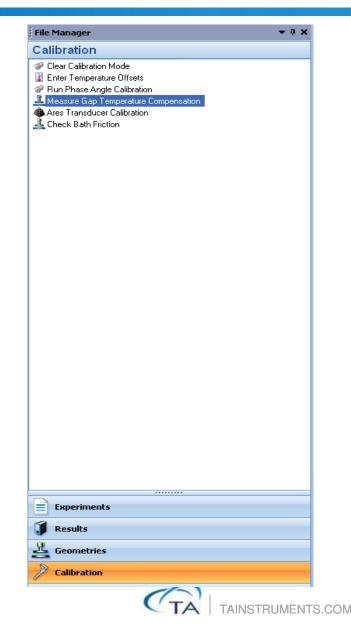
DMA 3-point bending and tension (cantilever not shown)

Geometry Overview

Geometry	Application	Advantage	Disadvantage
Cone/plate	fluids, melts viscosity > 10mPas	true viscosities	temperature ramp difficult
Parallel Plate	fluids, melts viscosity > 10mPas	easy handling, temperature ramp	shear gradient across sample
Couette	low viscosity samples < 10 mPas	high shear rate	large sample volume
Double Wall Couette	very low viscosity samples < 1mPas	high shear rate	cleaning difficult
Torsion Rectangular	solid polymers, composites	glassy to rubbery state	Limited by sample stiffness
DMA	Solid polymers, films, Composites	Glassy to rubbery state	Limited by sample stiffness (Oscillation and stress/strain)



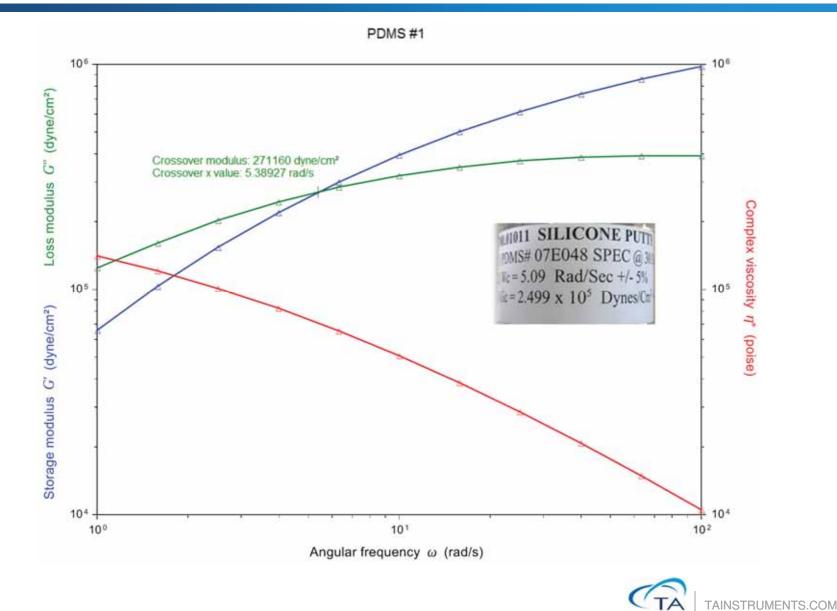
Rheometer Calibrations and Performance Verification


DHR – Calibration Options

- Instrument Calibrations
 - Inertia (Service)
 - Rotational Mapping
- Geometry Calibrations:
 - Inertia
 - Friction
 - Gap Temperature Compensation
 - Rotational Mapping
- Details in Appendix #4

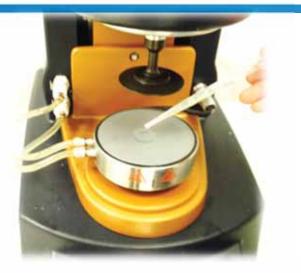
ARES-G2 – Calibration Options

- Instrument Calibrations
 - Transducer
 - Temperature Offsets
 - Phase Angle (Service)
 - Measure Gap Temperature Compensation
- Geometry Calibrations:
 - Compliance and Inertia (from table)
 - Gap Temperature Compensation
- Details in Appendix #4



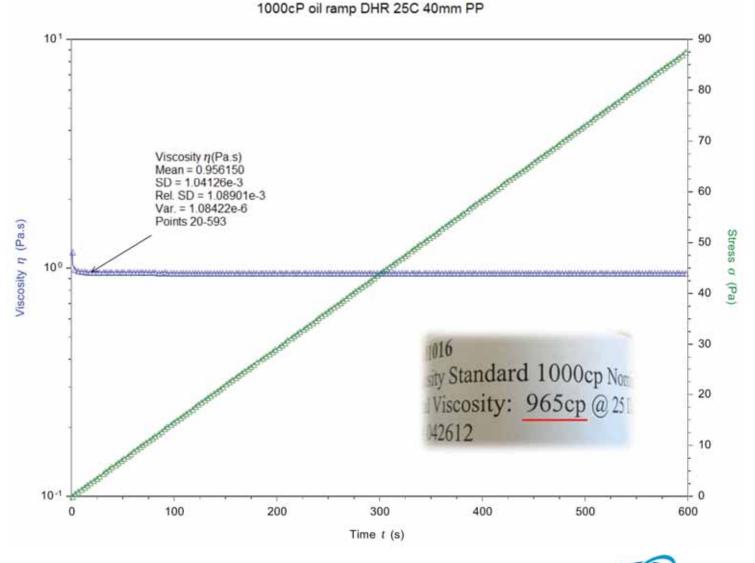
Verify Rheometer Performance

- Rheometers are calibrated from the factory and again at installation.
- TA recommends routine validation or confidence checks using standard oils or Polydimethylsiloxane (PDMS).
- PDMS is verified using a 25 mm parallel plate.
 - Oscillation Frequency Sweep: 1 to 100 rad/s with 5% strain at 30°C
 - Verify modulus and frequency values at crossover
- Standard silicone oils can be verified using cone, plate or concentric cylinder configurations.
 - Flow Ramp: 0 to 88 Pa at 25°C using a 60 mm 2° cone
 - Service performs this test at installation



PDMS Frequency Sweep Results

Load Standard Oil


- Set Peltier temperature to 25°C and equilibrate.
 - Zero the geometry gap
- Load sample
 - Be careful not to introduce air bubbles!
- Set the gap to the trim gap
- Lock the head and trim with non-absorbent tool
 - Important to allow time for temperature equilibration.
- Go to geometry gap and initiate the experiment.

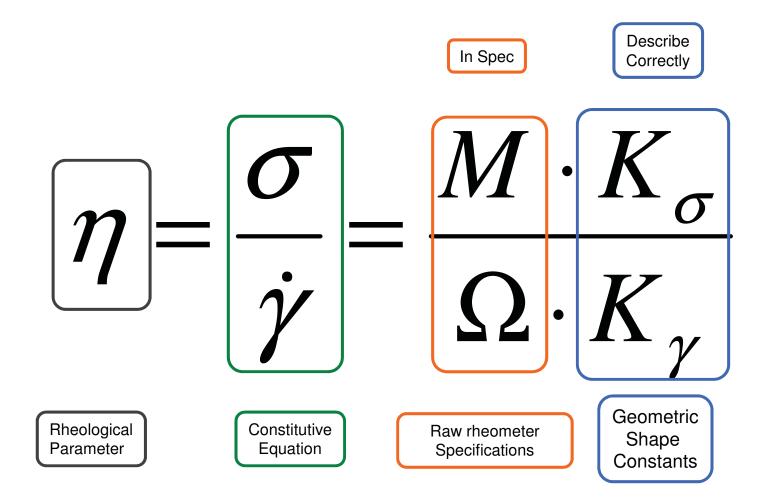
Flow Ramp – Standard Oil (Service Test)

TA TAINSTRUMENTS.COM

Setting up Rheological Experiments Flow Tests

Viscosity: Definition

• Viscosity is...


- "lack of slipperiness"
- synonymous with internal friction
- resistance to flow

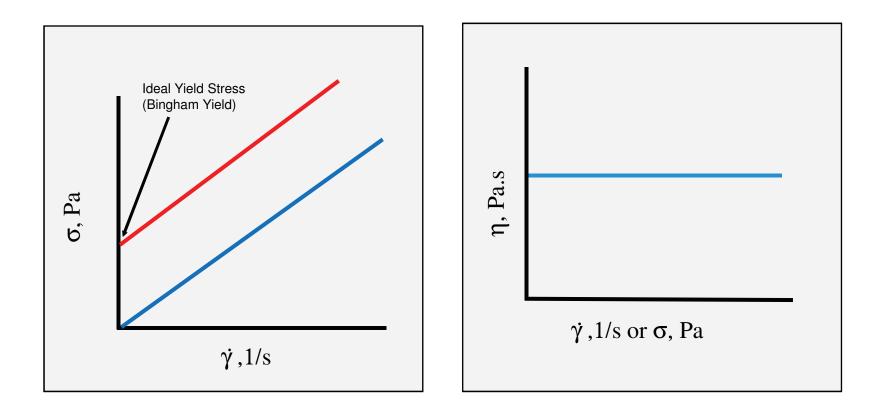
• The Units of Viscosity are ...

- SI unit is the Pascal-second (Pa-s)
- cgs unit is the Poise
- 10 Poise = 1 Pa.s
 - I cP (centipoise) = 1 mPa s (millipascal second)

Equation for Viscosity

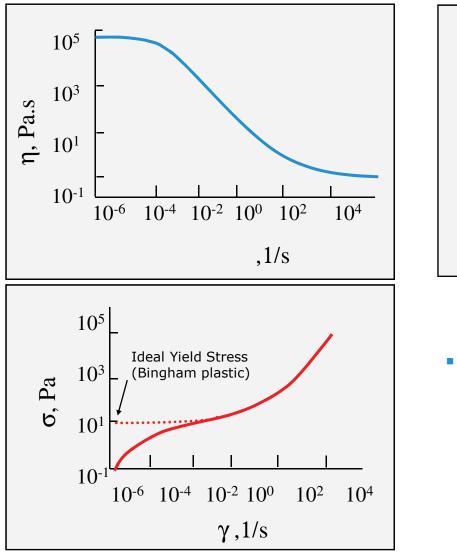
Typical Viscosity Values (Pa-s)

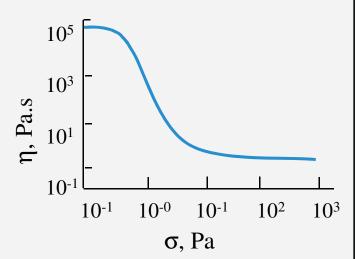
Asphalt Binder	100,000 ~	
Polymer Melt	1,000	
 Molasses 	100	
Liquid Honey	10	Need for
 Glycerol 	1	Log scale
 Olive Oil 	0.01	
 Water 	0.001	
• Air	0.00001	


Newtonian and Non-Newtonian Fluids

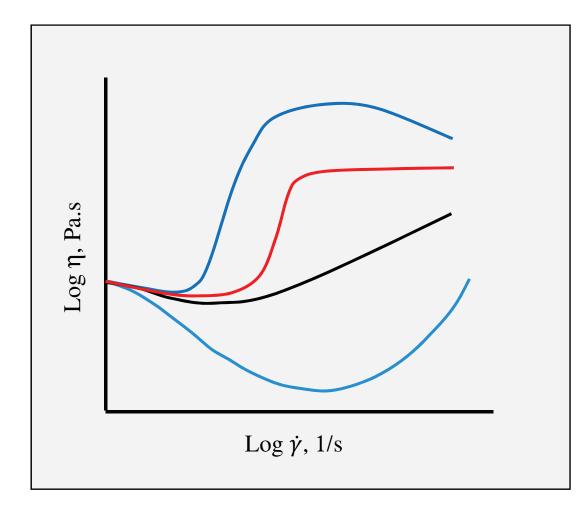
 Newtonian Fluids - constant proportionality between shear stress and shear-rate

- Non-Newtonian Fluids Viscosity is time or shear rate dependent
 - Time:
 - At constant shear-rate, if viscosity
 - Decreases with time Thixotropy
 - Increases with time Rheopexy
 - Shear-rate:
 - Shear thinning
 - Shear thickening

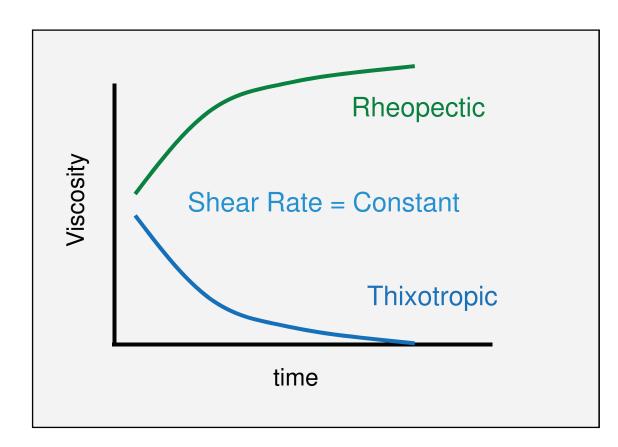



Characteristic Diagrams for Newtonian Fluids

Characteristic Diagrams for Shear Thinning Fluids



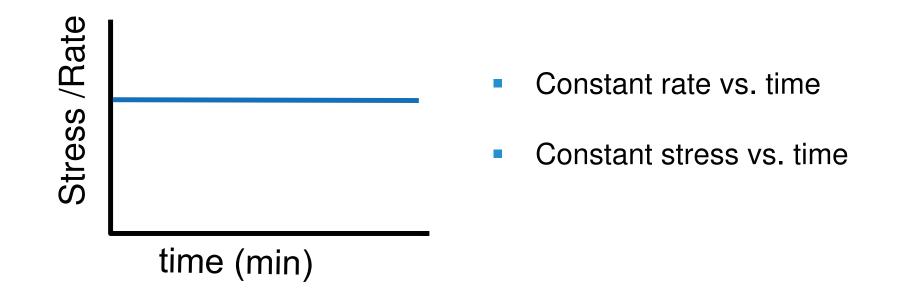
 Another name for a shear thinning fluid is a pseudo-plastic


Characteristic Diagrams for Shear Thickening Fluids

- Dilatant material resists deformation more than in proportion to the applied force (shear-thickening)
- Cornstarch in water or sand on the beach are actually dilatant fluids, since they do not show the timedependent, shear-induced change required in order to be labeled rheopectic

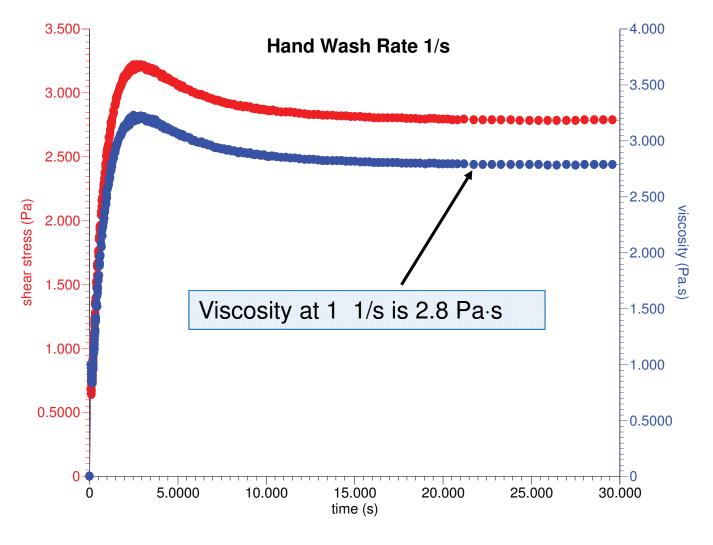
Non-Newtonian, Time Dependent Fluids

- Rheopectic materials become more viscous with increasing time of applied force
- Higher concentration latex dispersions and plastisol paste materials exhibit rheopectic behavior
- Thixotropic materials become more fluid with increasing time of applied force
- Coatings and inks can display thixotropy when sheared due to structure breakdown


Flow Experiments

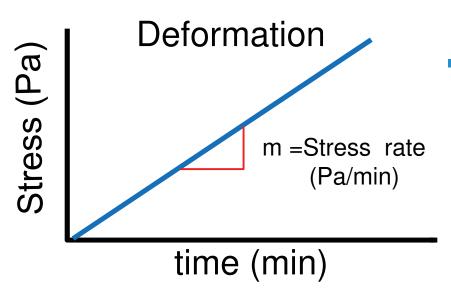
- Flow Experiments
 - Constant shear rate/stress (or Peak hold)
 - Continuous stress/rate ramp and down
 - Stepped flow (or Flow sweep)
 - Steady state flow
 - Flow temperature ramp

Constant Shear Rate/Stress



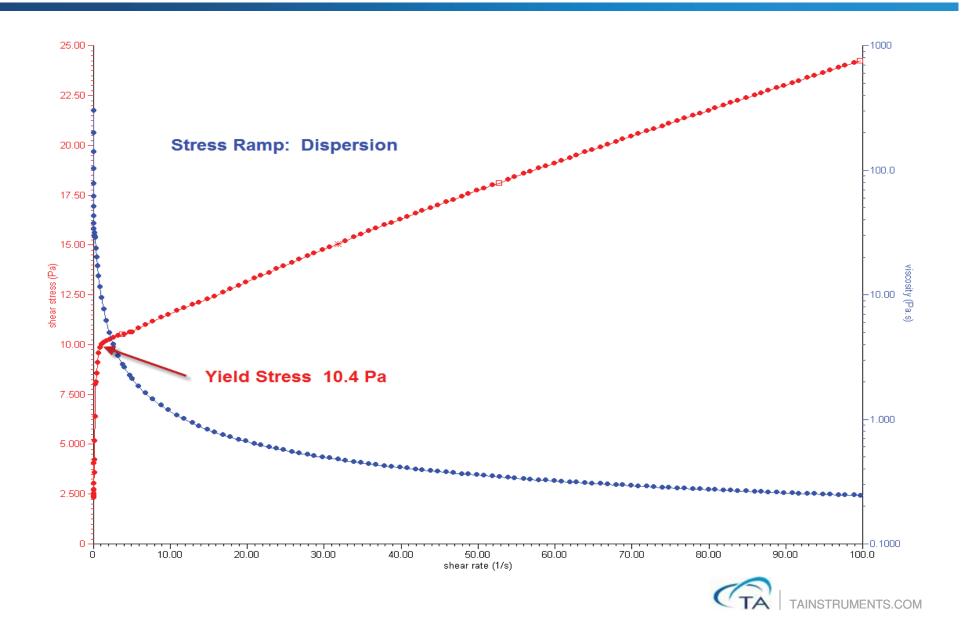
<u>USES</u>

- Single point testing
- Scope the time for steady state under certain rate

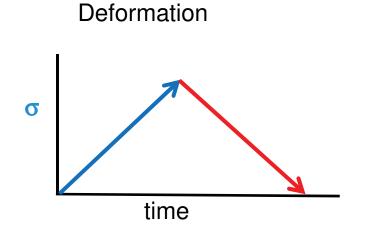


Constant Shear Rate/Stress

Continuous Ramp

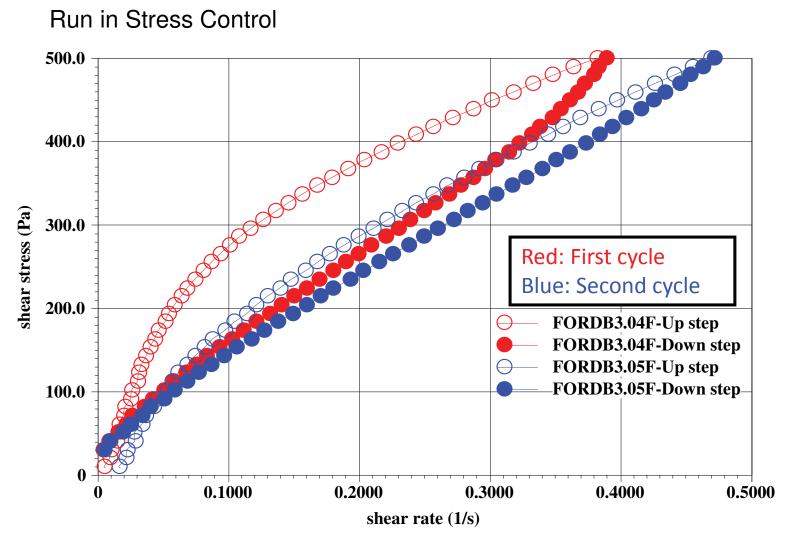

 Stress is applied to material at a constant rate. Resultant strain is monitored with time.

<u>USES</u>


- Yield stress
- Scouting Viscosity Run

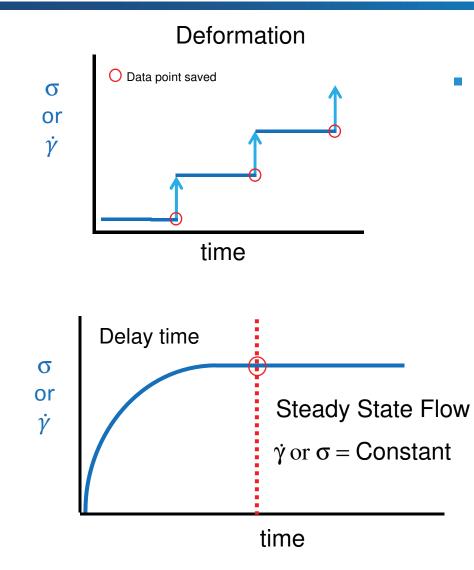
Stress Ramp: Flow Media Dispersion

Thixotropic Loop - Continuous Ramp Up and Down


 Stress is first increased, then decreased, at a constant rate. Resultant strain is monitored with time.

<u>USES</u>

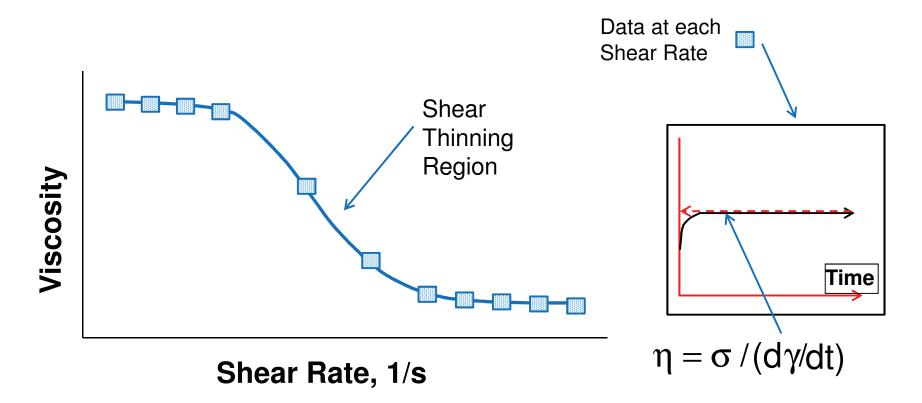
"Pseudo-thixotropy" from Hysteresis loop



Up & Down Flow Curves - 2 Repeats

Stepped or Steady-State Flow

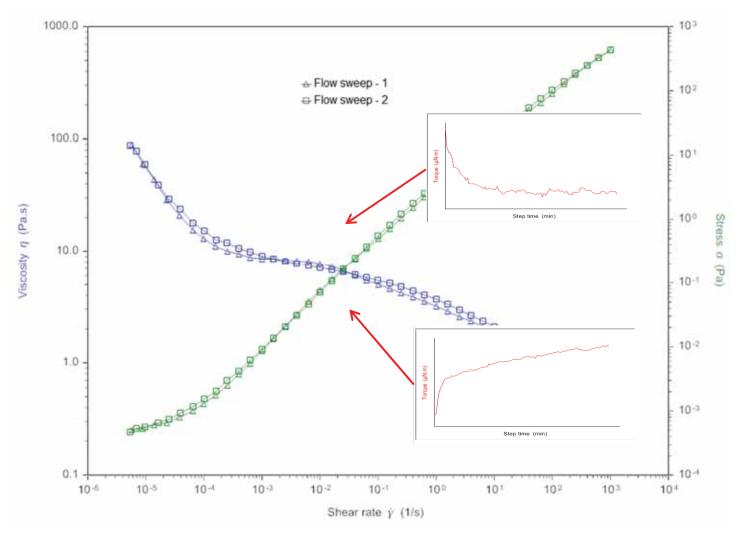
Stress is applied to sample. Viscosity measurement is taken when material has reached steady state flow. The stress is increased(logarithmically) and the process is repeated yielding a viscosity flow curve.


<u>USES</u>

- Viscosity Flow Curves
- Yield Stress Measurements

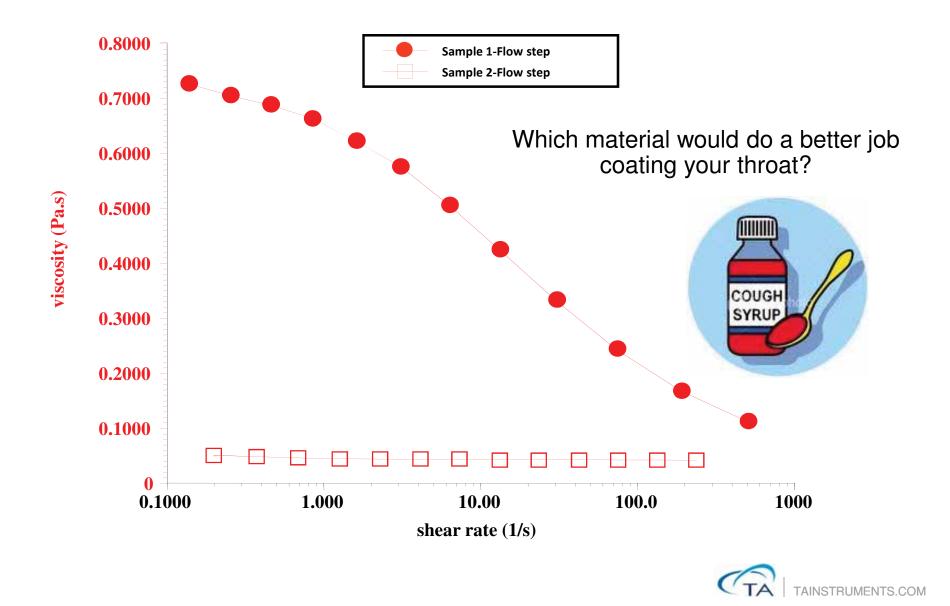
Stepped or Steady-State Flow

 A series of logarithmic stress steps allowed to reach steady state, each one giving a single viscosity data point:

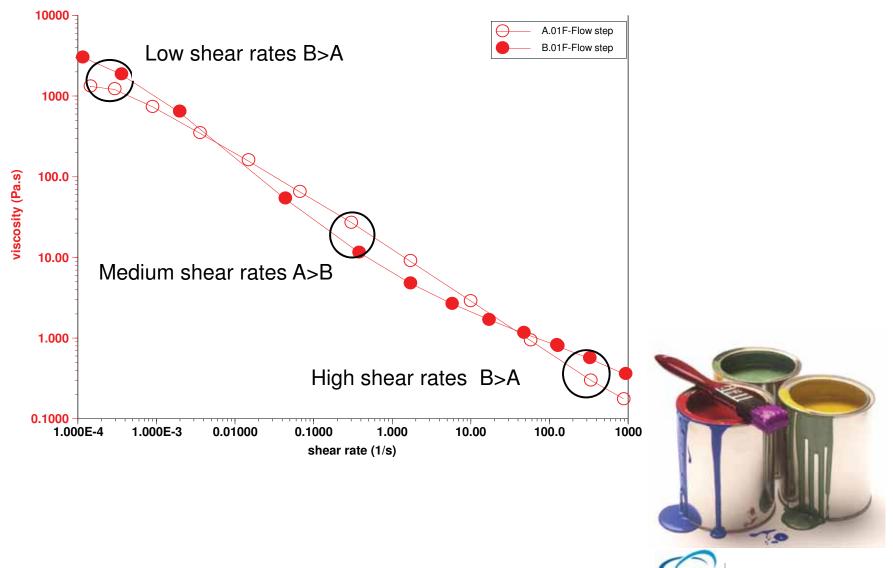

DHR and ARES G2: Steady State Flow

1: Flow Sweep

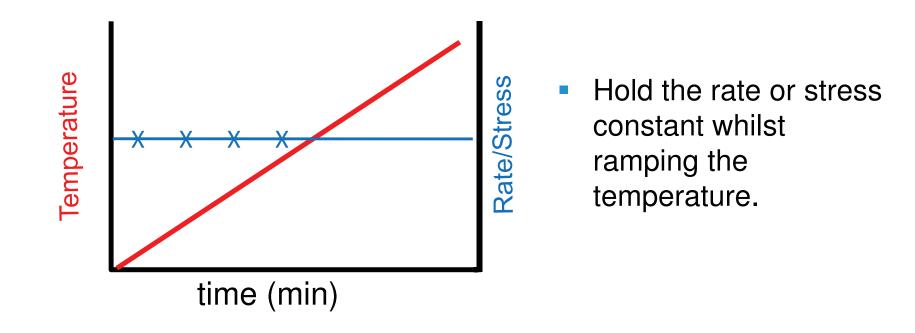
Environmental Control			
Temperature	25	°C	Inherit set point
Soak time	0	hh:mm:ss	Wait for temperatu
Test Parameters			
Logarithmic sweep			
Shear rate	0.1	to 100.0	1/s ▼
Points per decade	5		
	Ŭ		
📝 Steady state sensing	g		
Max. equilibration time	03:00	hh:mm:ss	
Sample period	30	hh:mm:ss	
% tolerance	5.0		*
Consecutive within	3		
Scaled time average	9		
Controlled Rate Adva	nood		
Š	inced		
 Data acquisition 			
Save point display			
Save image			
Step termination			



Flow Sweeps- Water-Based Paint with Solvent Trap



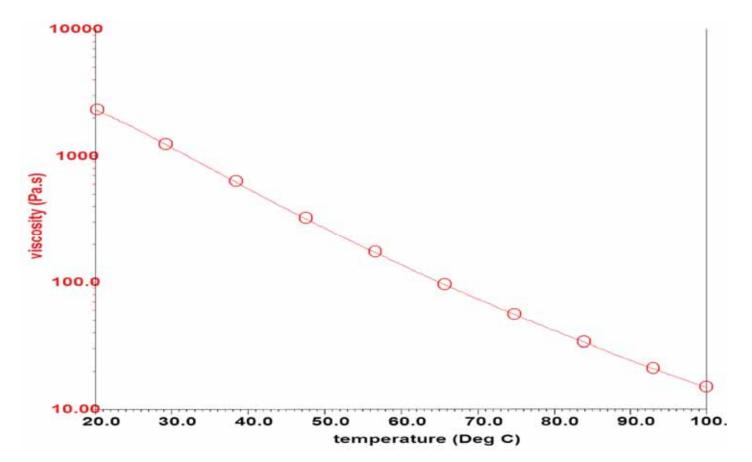
Comparison of Cough Syrups



Comparison of Two Latex Paints

A | TAINSTRUMENTS.COM

Flow Temperature Ramp



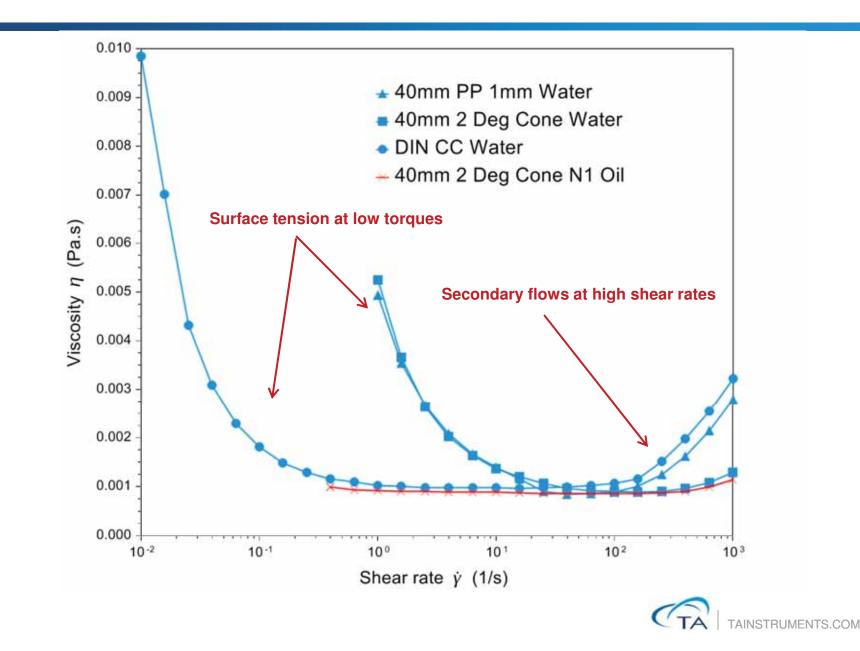
<u>USES</u>

Measure the viscosity change vs. temperature

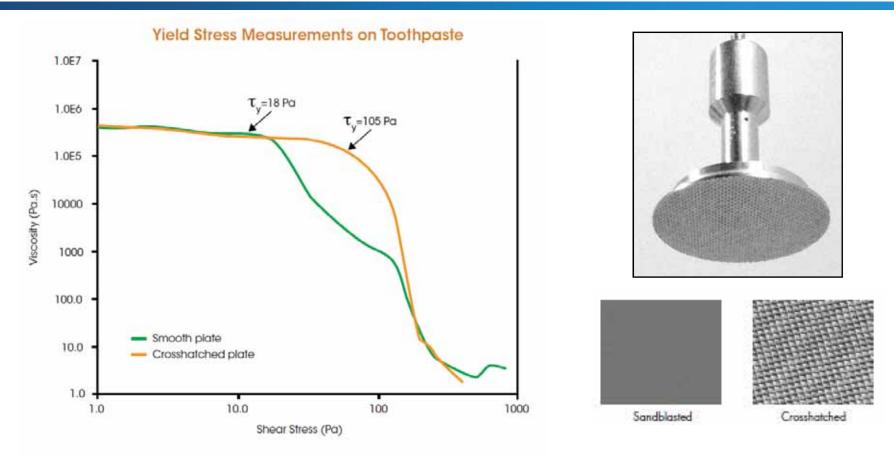
Viscosity: Temperature Dependence

Notice a nearly 2 decade decrease in viscosity. This displays the importance of thermal equilibration of the sample prior to testing.

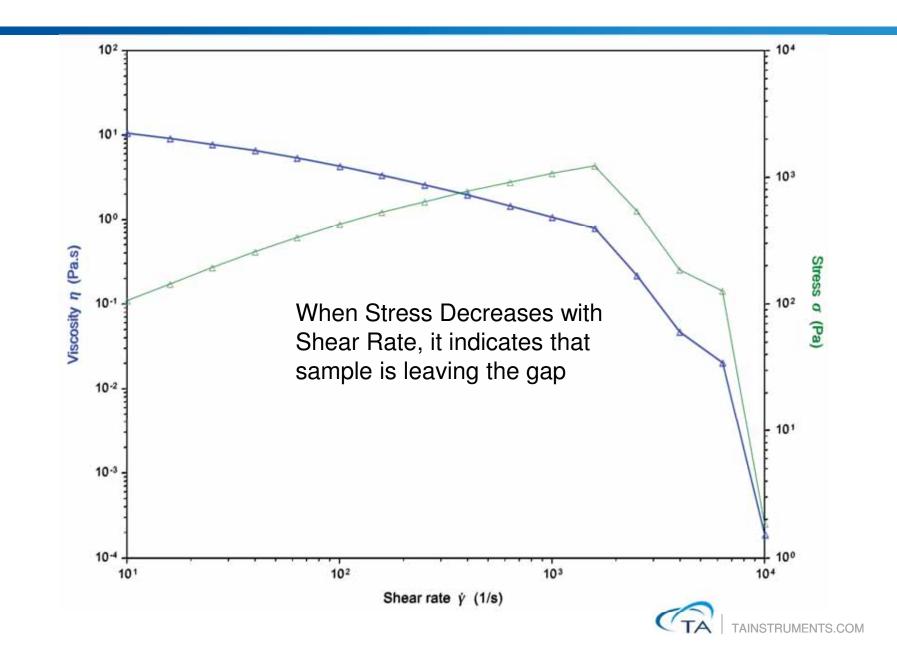
i.e. Conditioning Step or equilibration time for 3 to 5 min



Flow Testing Considerations


- Small gaps give high shear rates
 - Be careful with small gaps:
 - Gap errors (gap temperature compensation) and shear heating can cause large errors in data.
 - Recommended gap is between 0.5 to 2.0 mm.
 - Secondary flows can cause increase in viscosity curve
- Be careful with data interpretation at low shear rates
 - Surface tension can affect measured viscosity, especially with aqueous materials

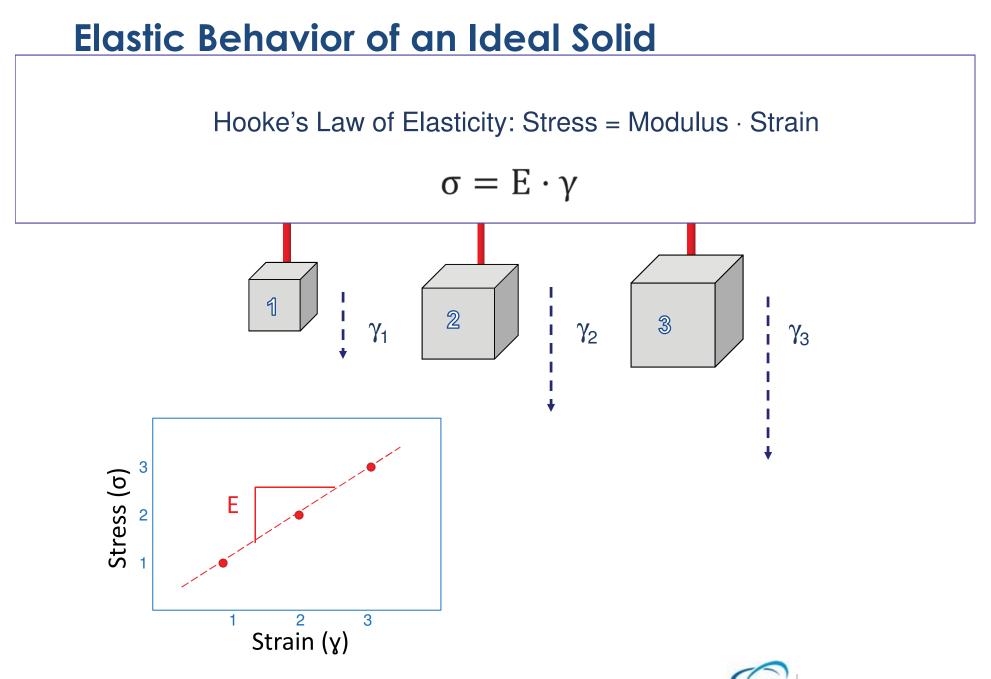
Water at 25°C – Secondary Flow


Wall Slip

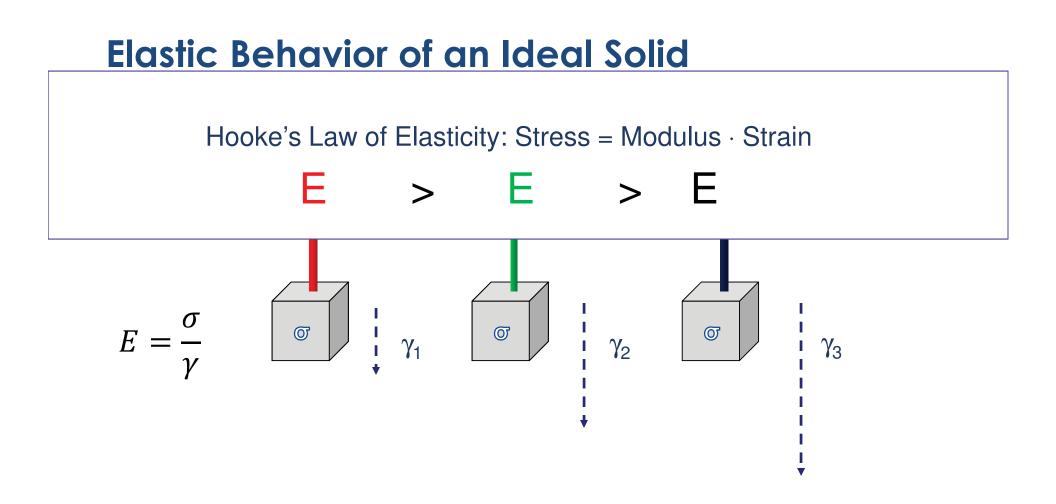
- Wall slip can manifest as "apparent double yielding"
- Can be tested by running the same test at different gaps
- For samples that don't slip, the results will be independent of the gap

Shear Thinning or Sample Instability?

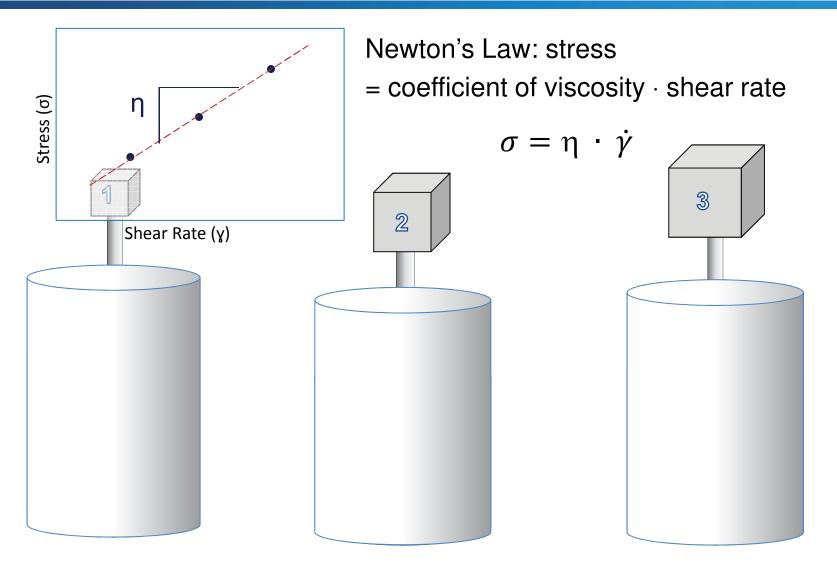
Flow Testing Considerations


- Edge Failure Sample leaves gap because of normal forces
 - Look at stress vs. shear rate curve stress should not decrease with increasing shear rate – this indicates sample is leaving gap
- Possible Solutions:
 - use a smaller gap or smaller angle so that you get the same shear rate at a lower angular velocity
 - if appropriate (i.e. Polymer melts) make use of Cox Merz Rule

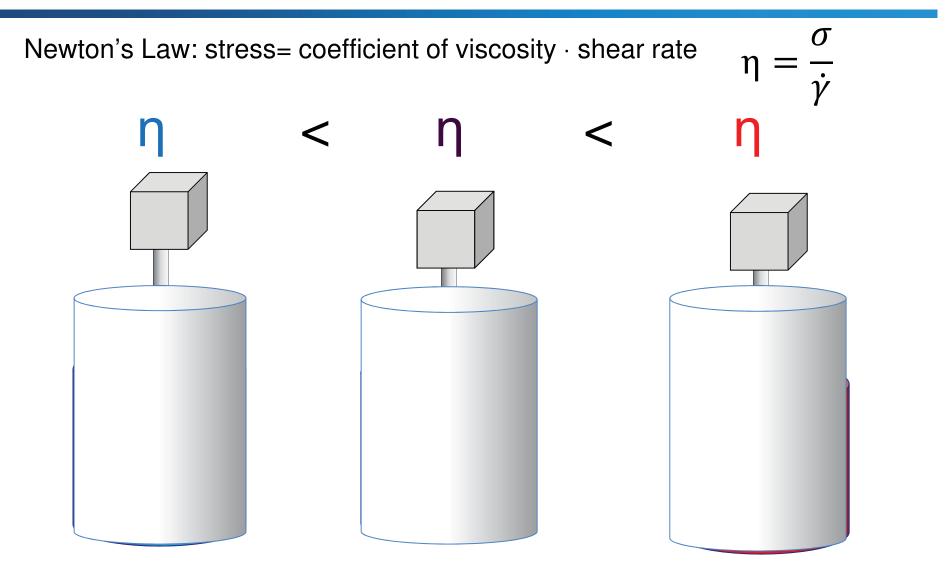
$$\eta(\dot{\gamma}) \equiv \eta^*(\omega)$$



Viscoelasticity

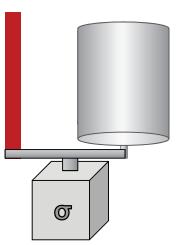


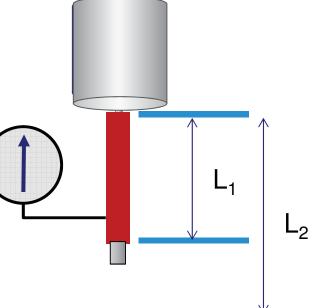
A TAINSTRUMENTS.COM



Viscous Behavior of an Ideal Liquid

Viscous Behavior of an Ideal Liquid




Viscoelastic Behavior

$$\sigma = \mathsf{E}^* \varepsilon + \eta^* d\varepsilon / dt$$

Kelvin-Voigt Model (Creep)

Maxwell Model (Stress Relaxation)

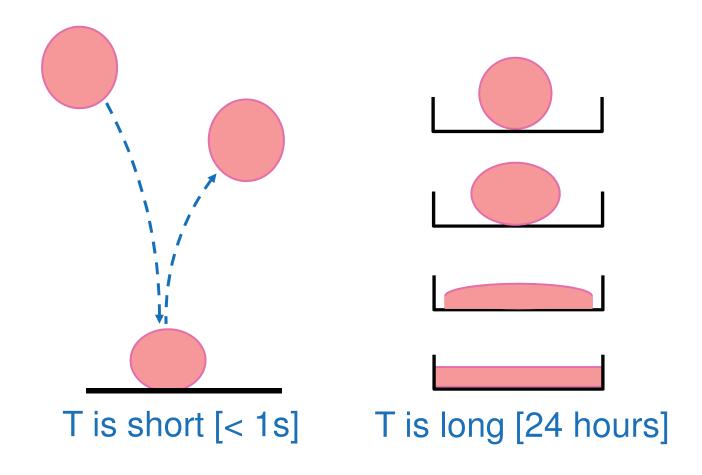
Viscoelastic Materials: Force depends on both Deformation and Rate of Deformation and vice versa. Range of Material Behavior Liquid Like----- Solid Like Ideal Fluid ----- Most Materials -----Ideal Solid Purely Viscous ----- Viscoelastic ----- Purely Elastic

Viscoelasticity: Having both viscous and elastic properties

 Materials behave in the linear manner, as described by Hooke and Newton, only on a small scale in stress or deformation.

Pitch Drop Experiment

- Long deformation time: pitch behaves like a highly viscous liquid
 - 9th drop fell July 2013
- Short deformation time: pitch behaves like a solid



Started in 1927 by Thomas Parnell in Queensland, Australia

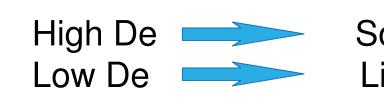
http://www.theatlantic.com/technology/archive/2013/07/the-3-most-exciting-words-in-science-right-now-the-pitch-dropped/277919/

Time-Dependent Viscoelastic Behavior

Time-Dependent Viscoelastic Behavior

- Silly Putties have different characteristic relaxation times
- Dynamic (oscillatory) testing can measure time-dependent viscoelastic properties more efficiently by varying frequency (deformation time)

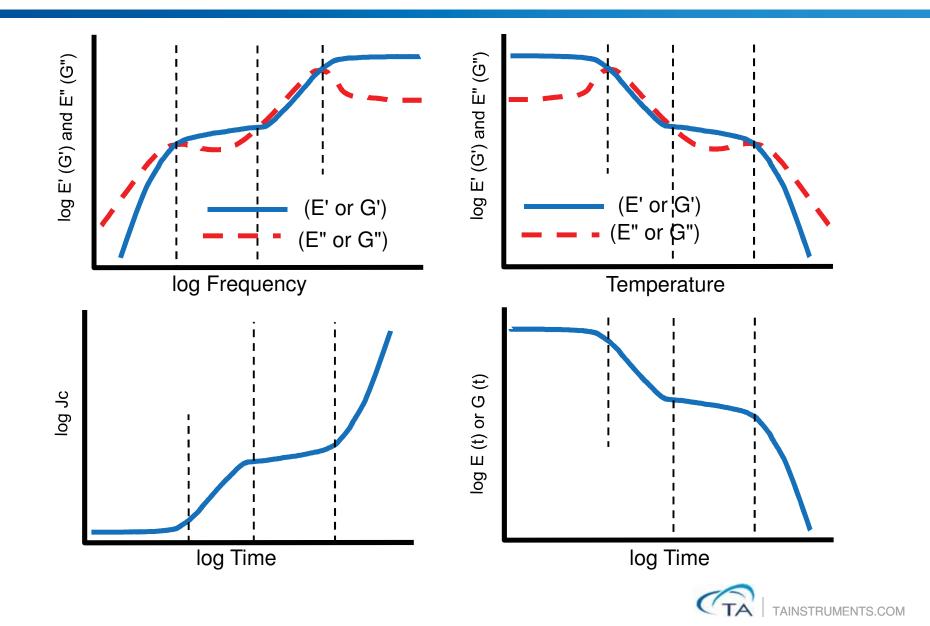
Viscoelasticity, Deborah Number


- Old Testament Prophetess who said (Judges 5:5): "The Mountains 'Flowed' before the Lord"
- Everything Flows if you wait long enough!
- Deborah Number, De The ratio of a characteristic relaxation time of a material (τ) to a characteristic time of the relevant deformation process (T).

$$De = \tau/T$$

Deborah Number

- Hookean elastic solid τ is infinite
- Newtonian Viscous Liquid τ is zero
- Polymer melts processing T may be a few seconds



Solid-like behavior Liquid-like behavior

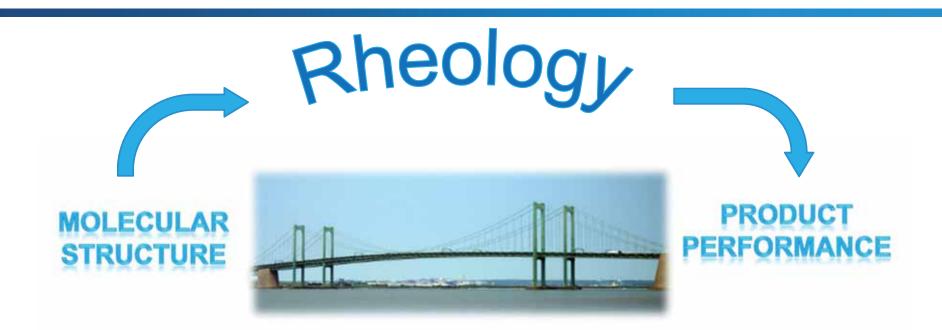
<u>IMPLICATION:</u> Material can appear solid-like because
1) it has a very long characteristic relaxation time or
2) the relevant deformation process is very fast

Time and Temperature Relationship

Linear Viscoelasticity Region (LVR) Defined

"If the deformation is small, or applied sufficiently slowly, the molecular arrangements are never far from equilibrium.

The mechanical response is then just a reflection of dynamic processes at the molecular level which go on constantly, even for a system at equilibrium.


This is the domain of LINEAR VISCOELASTICITY.

The magnitudes of stress and strain are related linearly, and the behavior for any liquid is completely described by a single function of time."

Mark, J., et. al., Physical Properties of Polymers, American Chemical Society, 1984, p. 102.

Importance of LVR

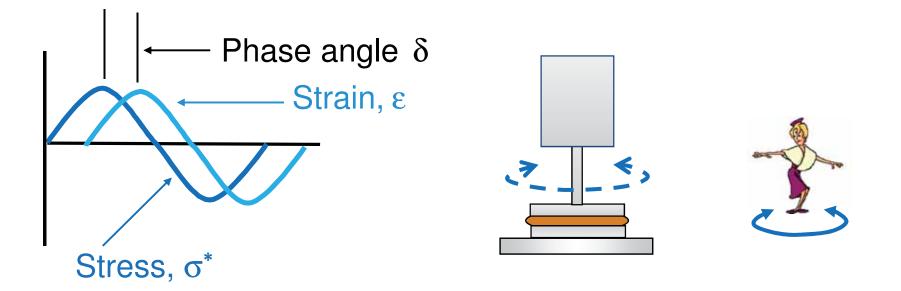
Linear Viscoelastic Properties

E' (or G'), E" (or G"), tan δ,η^*

Measuring linear viscoelastic properties helps us bridge the gap between molecular structure and product performance

Setting up Rheological Experiments Oscillatory Tests

Understanding Oscillation Experiments

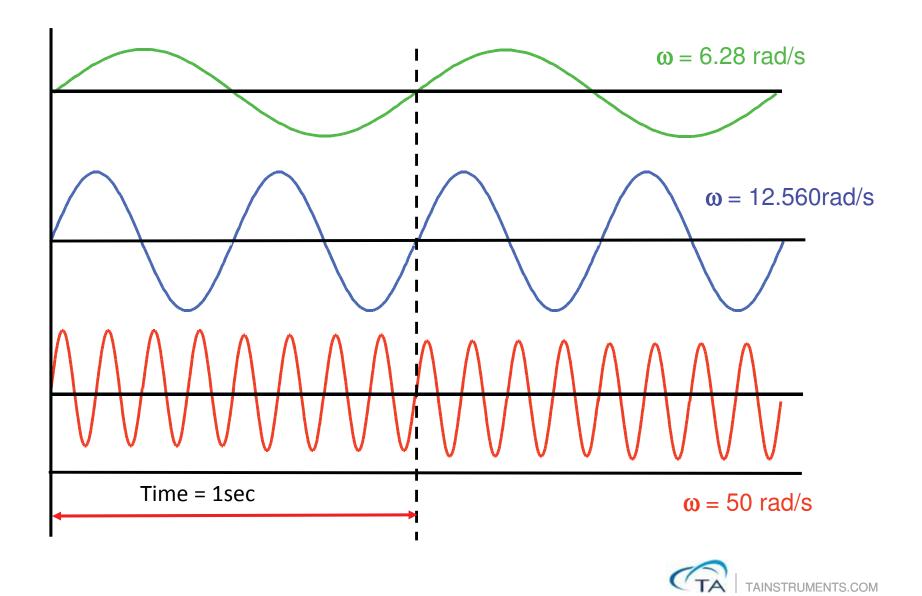

Define Oscillation Testing

Approach to Oscillation Experimentation

- Stress and Strain Sweep
- Time Sweep
- Frequency Sweep
- Temperature Ramp
- Temperature Sweep (TTS)

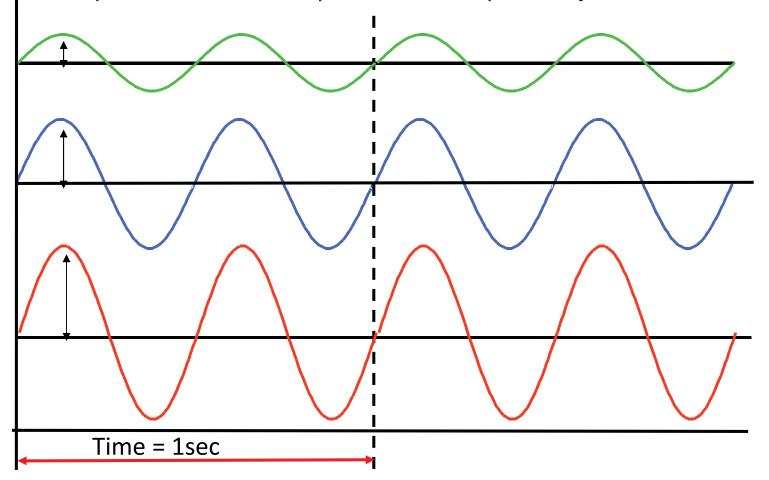
What is Oscillation?

Dynamic stress applied sinusoidally User-defined Stress or Strain amplitude and frequency



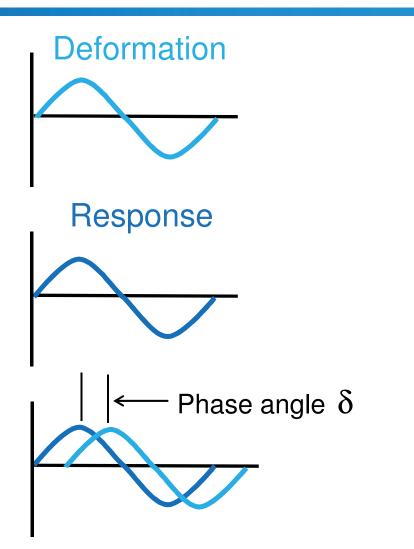
Frequency Defined

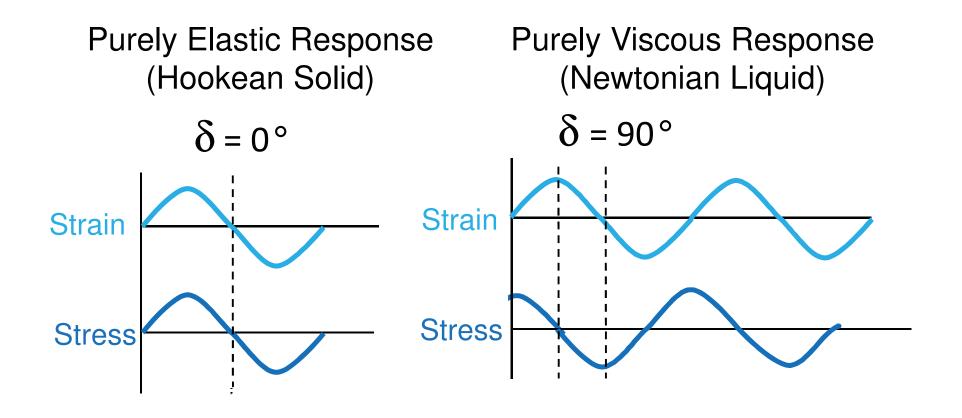
- Time to complete one oscillation
- Frequency is the inverse of time
- Units
 - Angular Frequency = radians/second
 - Frequency = cycles/second (Hz)
- Rheologist must think in terms of rad/s.
 - 1 Hz = 6.28 rad/s



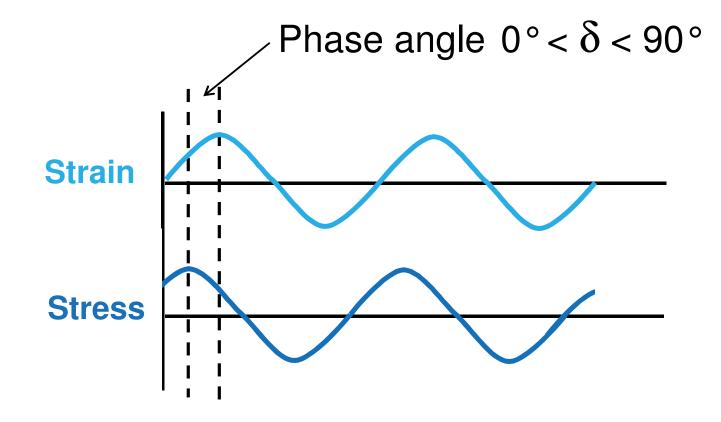
Frequency

Amplitude: Strain or Stress

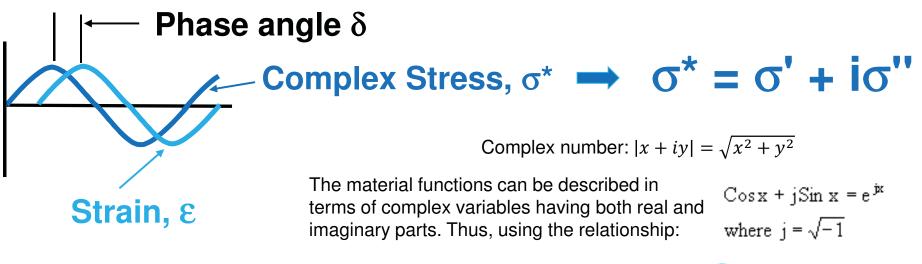

 Strain and stress are calculated from peak amplitude in the displacement and torque waves, respectively.


Dynamic Mechanical Testing

- An oscillatory (sinusoidal) deformation (stress or strain) is applied to a sample.
- The material response (strain or stress) is measured.
- The phase angle δ , or phase shift, between the deformation and response is measured.



Dynamic Testing: Response for Classical Extremes


Dynamic Testing: Viscoelastic Material Response

Viscoelastic Parameters: Complex, Elastic, & Viscous Stress

- The stress in a dynamic experiment is referred to as the complex stress σ*
- The complex stress can be separated into two components:
 - 1) An elastic stress in phase with the strain. $\sigma' = \sigma^* \cos \delta$
 - σ' is the degree to which material behaves like an elastic solid.
 - 2) A viscous stress in phase with the strain rate. $\sigma'' = \sigma^* \sin \delta$ σ'' is the degree to which material behaves like an ideal liquid.

Viscoelastic Parameters

<u>The Modulus:</u> Measure of materials overall resistance to deformation.

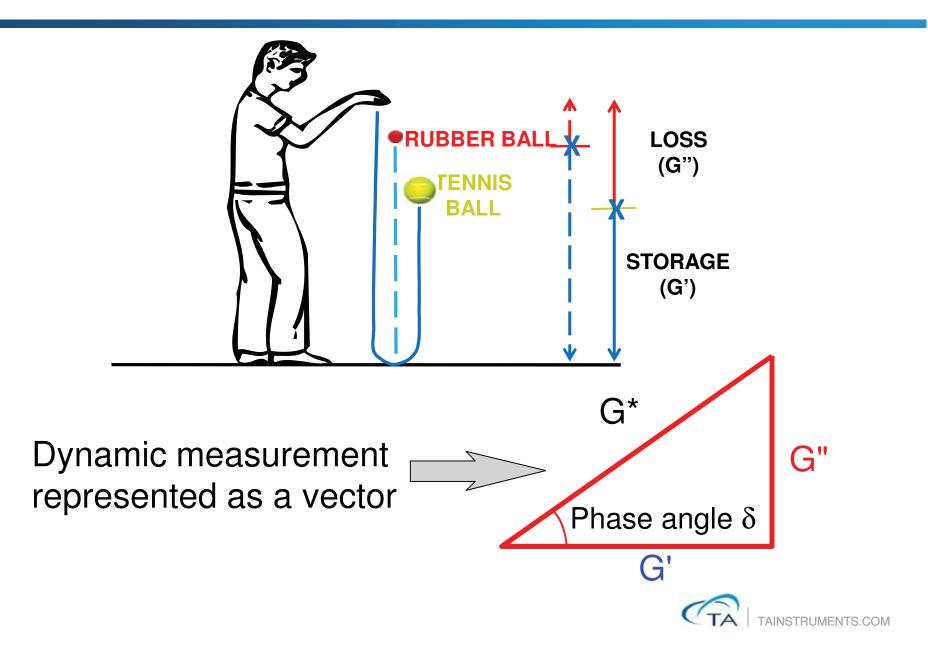
<u>The Elastic (Storage) Modulus:</u> Measure of elasticity of material. The ability of the material to store energy.

<u>The Viscous (loss) Modulus:</u> The ability of the material to dissipate energy. Energy lost as heat.

Tan Delta:

Measure of material damping such as vibration or sound damping.

$$G^* = \left(\frac{\text{Stress}^*}{\text{Strain}}\right)$$


$$G' = \left(\frac{\text{Stress}^*}{\text{Strain}}\right)\cos\delta$$

$$G'' = \left(\frac{Stress^*}{Strain}\right) \sin \delta$$

$$\tan \delta = \left(\frac{G'}{G'}\right)$$

Storage and Loss of a Viscoelastic Material

Complex Viscosity

- The viscosity measured in an oscillatory experiment is a Complex Viscosity much the way the modulus can be expressed as the complex modulus. The complex viscosity contains an elastic component and a term similar to the steady state viscosity.
 - The Complex viscosity is defined as:

```
\eta^* = \eta' + i \eta''
or
\eta^* = G^*/\omega
```

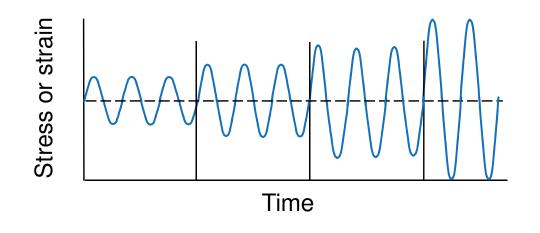
Note: frequency must be in rad/sec!

Dynamic Rheological Parameters

Parameter	Shear	Elongation	Units
Strain	$\gamma = \gamma_0 \sin(\omega t)$	$\varepsilon = \varepsilon_0 \sin(\omega t)$	
Stress	$σ = σ_0 sin(ωt + δ)$	$τ = τ_0 sin(ωt + δ)$	Pa
Storage Modulus (Elasticity)	G' = ($σ_0/γ_0$)cosδ	E' = ($τ_0/ε_0$)cosδ	Pa
Loss Modulus (Viscous Nature)	G" = (σ_0/γ_0)sinδ	E" = ($τ_0/ε_0$)sinδ	Pa
Tan δ	G"/G'	E"/E'	
Complex Modulus	G [*] = (G ² +G ²) ^{0.5}	E [*] = (E ² +E ²) ^{0.5}	Ра
Complex Viscosity	$\eta^* = G^*/\omega$	$\eta_{E}^{*} = E^{*}/\omega$	Pa·sec

Cox-Merz Rule for Linear Polymers: $\eta^*(\omega) = \eta(\dot{\gamma}) @ \dot{\gamma} = \omega$

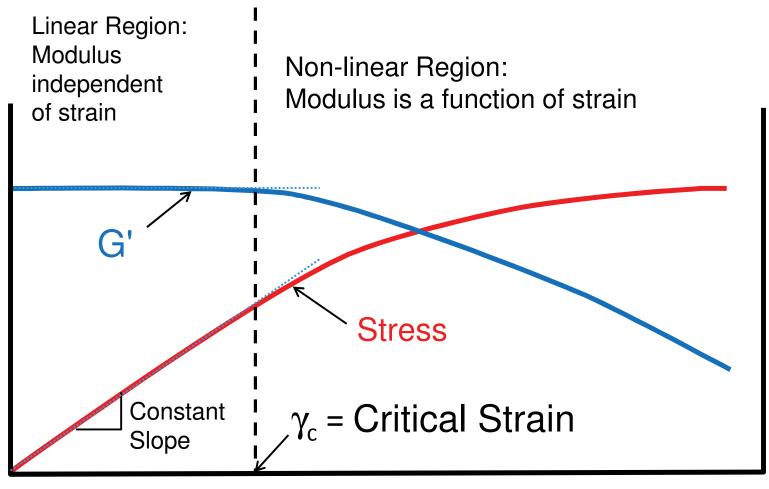
Understanding Oscillation Experiments


Define Oscillation Testing

Approach to Oscillation Experimentation

- 1. Stress and Strain Sweep
- 2. Time Sweep
- 3. Frequency Sweep
- 4. Temperature Ramp
- 5. Temperature Sweep (TTS)

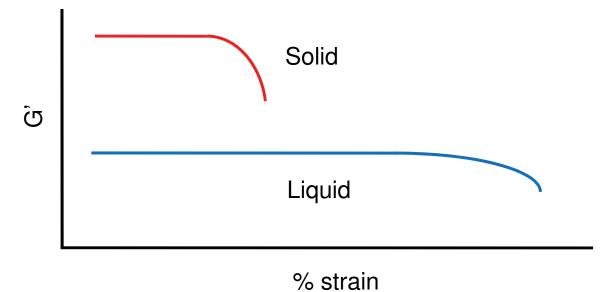
Dynamic Strain or Stress Sweep



 The material response to increasing deformation amplitude (strain or stress) is monitored at a constant frequency and temperature.

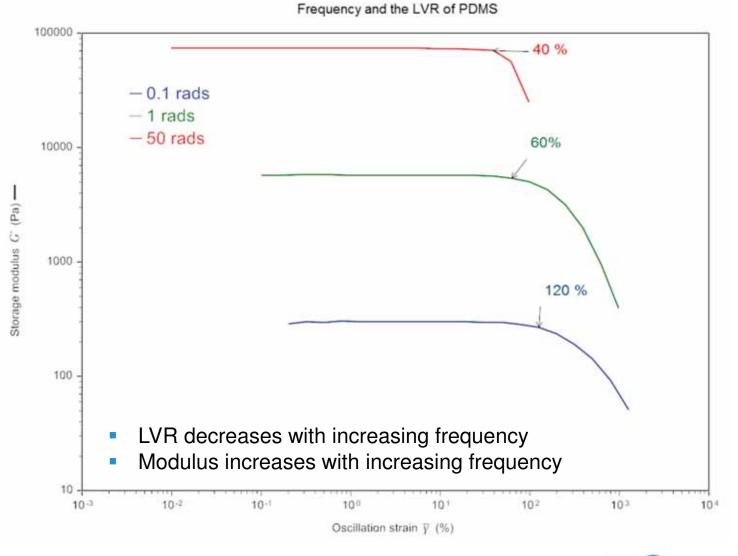
- Main use is to determine LVR
 - All subsequent tests require an amplitude found in the LVR
- Tests assumes sample is stable
- If not stable use Time Sweep to determine stability

Dynamic Strain Sweep: Material Response

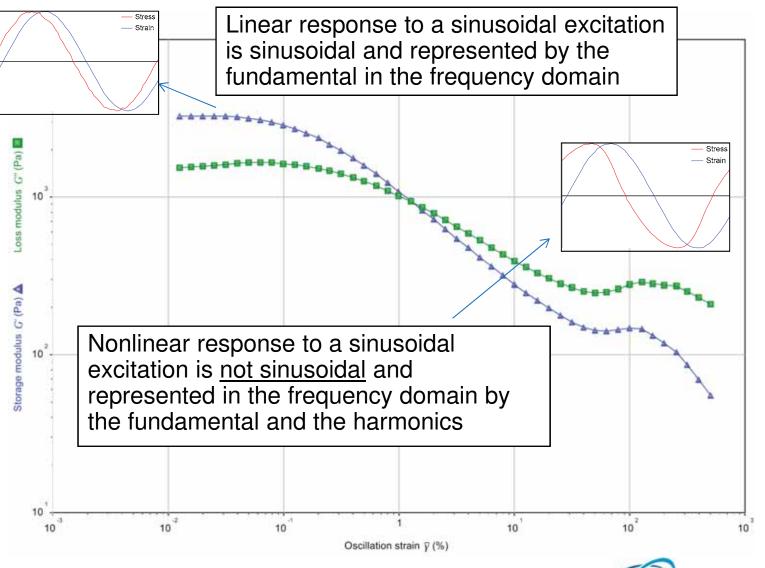


Strain (amplitude)

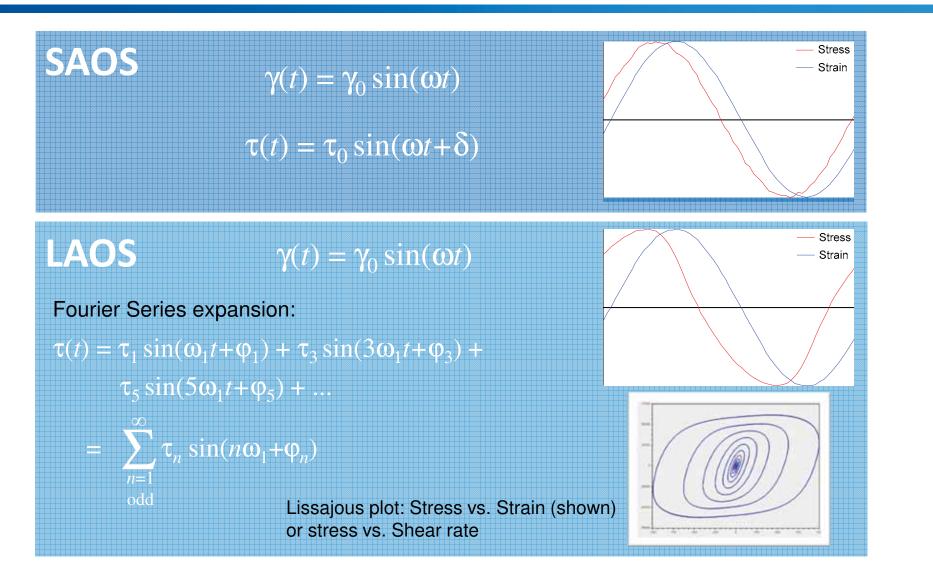
Temperature Dependence of LVR


 In general, the LVR is shortest when the sample is in its most solid form.

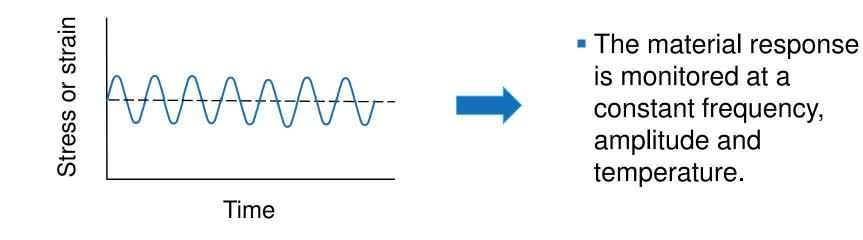
70 Strain



Frequency Dependence of LVR



SAOS versus LAOS Waveforms

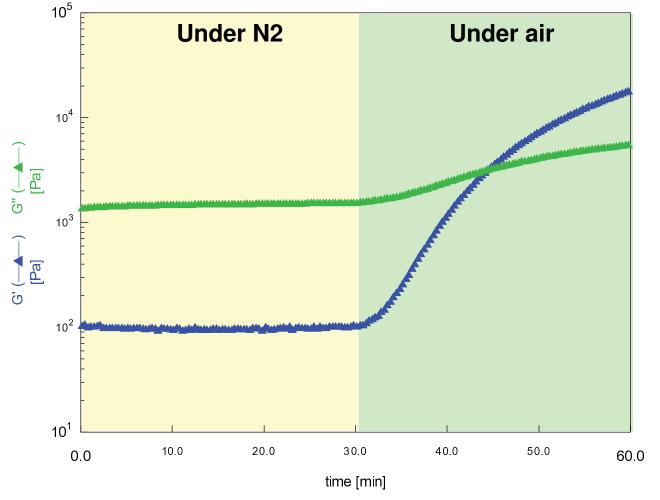


LAOS: Analysis of Higher Harmonics

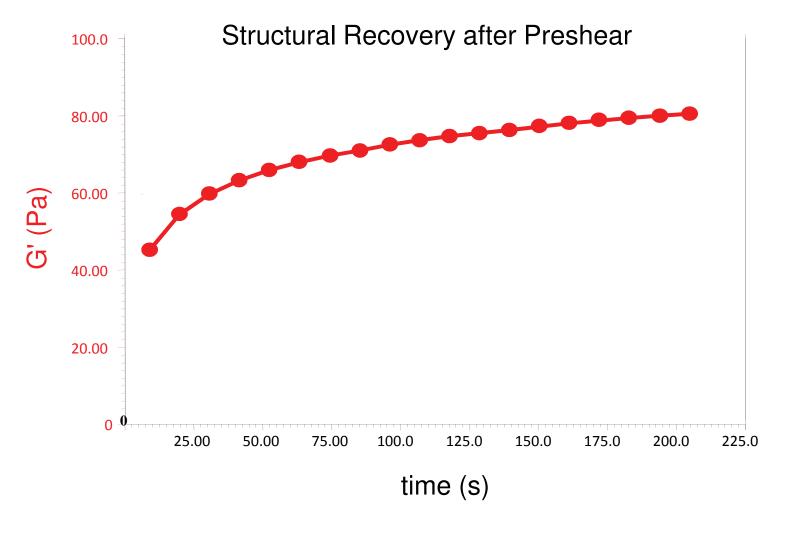
Dynamic Time Sweep

<u>USES</u>

- Time dependent Thixotropy
- Cure Studies
- Stability against thermal degradation
- Solvent evaporation/drying


Importance of Time Sweep

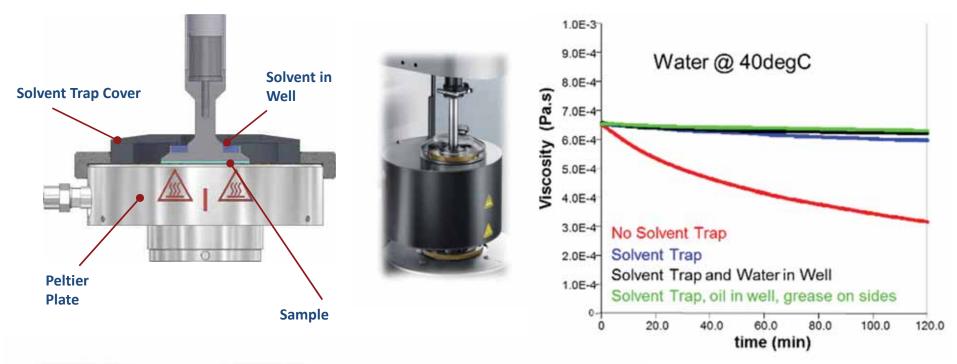
- Important, but often overlooked
 - Visually observe the sample
- Determines if properties are changing over the time of testing
 - Complex Fluids or Dispersions
 - Preshear or effects of loading
 - Drying or volatilization (use solvent trap)
 - Thixotropic or Rheopectic
 - Polymers
 - Degradation (inert purge)
 - Crosslinking


Time Sweep on PEEK Melt - Thermal Stability

2000G time sweep at 400°C

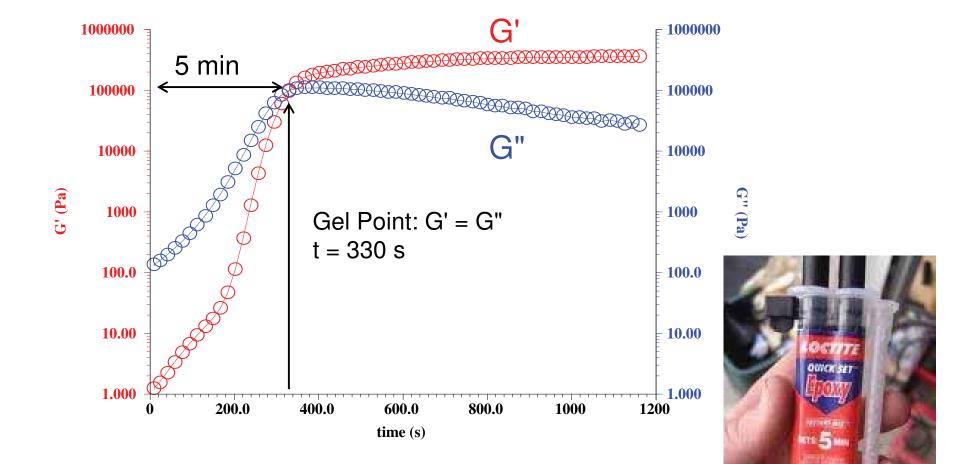
Time Sweep on Latex

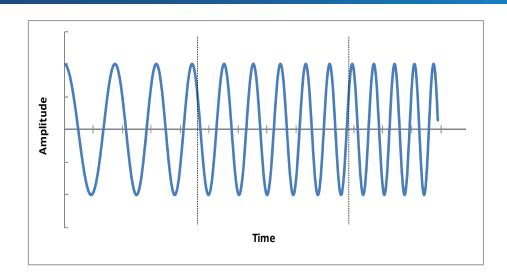
Importance of Waiting for Structure Rebuild



- End of LVR is indicative of "Yield" or "Strength of Structure"
- Useful for Stability predictions (stability as defined by yield)

Solvent Trap System for Effective Evaporation Control

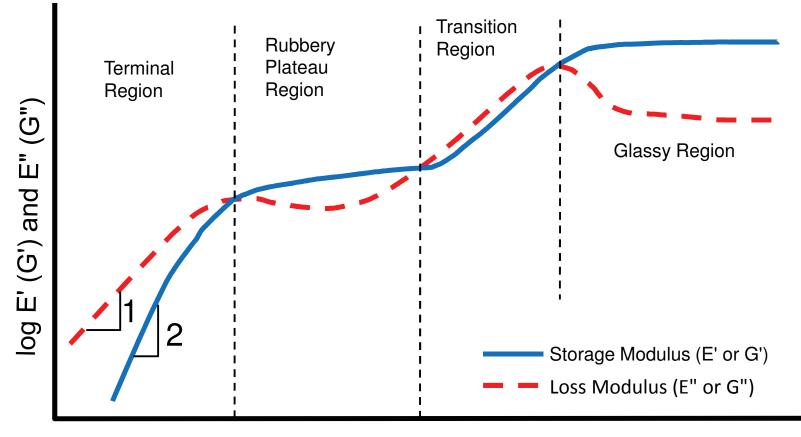

Solvent trap cover picks up heat from Peltier Plate to insure uniform temperature



Cure of a "5 Minute" Epoxy

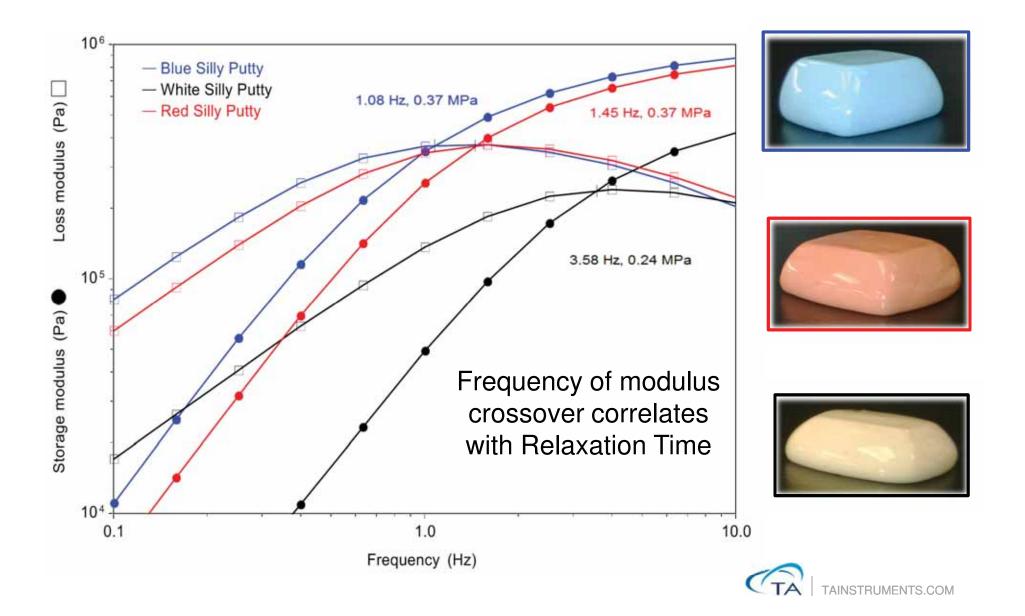
TA | TAINSTRUMENTS.COM

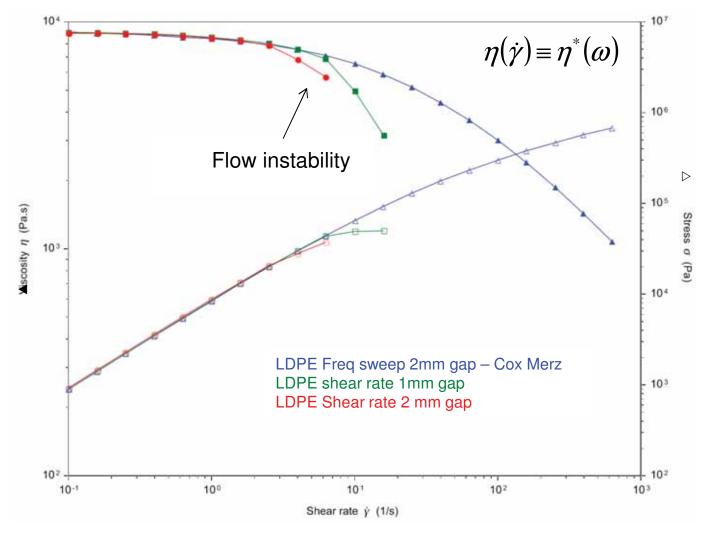
Frequency Sweep



 The material response to increasing frequency (rate of deformation) is monitored at a constant amplitude (strain or stress) and temperature.

- Strain should be in LVR
- Sample should be stable
- Remember Frequency is 1/time so low frequencies will take a long time to collect data – i.e. 0.001Hz is 1000 sec (over 16 min)


Frequency Sweep: Material Response


log Frequency (rad/s or Hz)

Frequency Sweep- Time Dependent Viscoelastic Properties

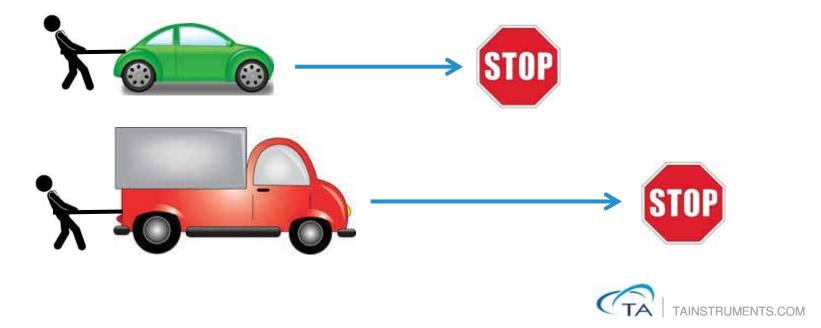
Cox-Merz Example - LDPE at 190°C

Importance of Frequency Sweeps

- High and low rate (short and long time) properties
- Viscosity Information Zero Shear Viscosity, shear thinning
- Elasticity (reversible deformation) in materials
- MW & MWD differences polymer melts and solutions
- Finding yield in gelled dispersions
- Can extend time or frequency range with TTS

$$\eta_0 \approx M_w^{3.4} \text{ and } J_e = \frac{G'}{(G'')^2} \approx \left(\frac{M_w}{M_z}\right)^{3.4}$$

Frequency in DHR Rheometer


- DHR has a combined motor and transducer design.
 - In an DHR rheometer, the applied motor torque and the measured amplitude are coupled.
 - The moment of inertia required to move the motor and geometry (system inertia) is coupled with the angular displacement measurements.
 - This means that **BOTH** the system inertia and the sample contributes to the measured signal.

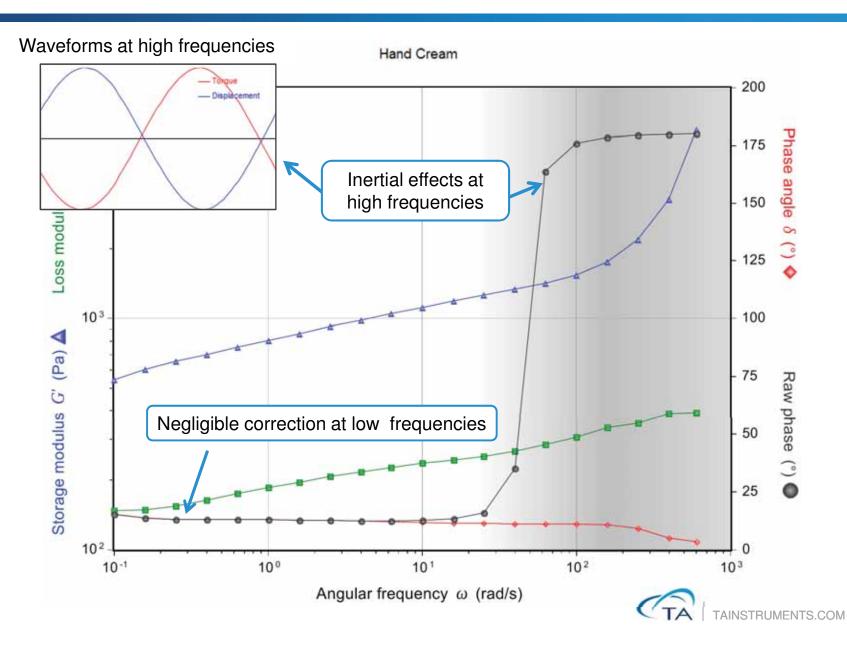
Inertial Effects

What is Inertia?

- <u>Definition</u>: That property of matter which manifests itself as a resistance to any change in momentum of a body
- Instrument has inertia
- Sample has inertia

Inertial Effects in Oscillation for DHR

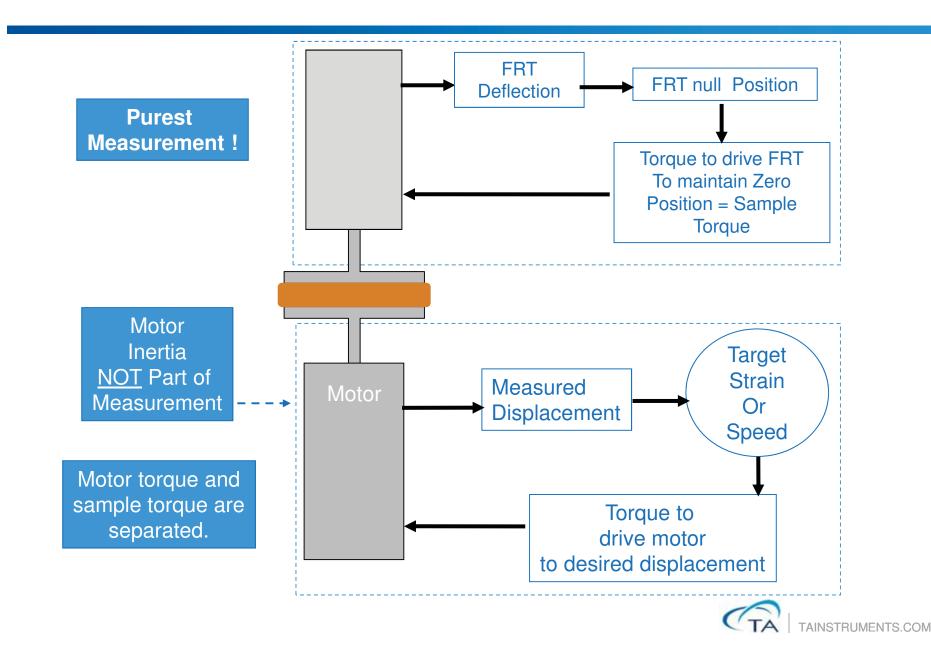
Inertia consideration


- Viscosity limitations with frequency
- Minimize inertia by using low mass geometries
- Monitor inertia using Raw Phase in degree
- When Raw Phase is greater than:
 - 150° degrees for AR series
 - 175° degrees for DHR series
 - This indicates that the system inertia is dominating the measurement signal. Data may not be valid

Raw Phase × Inertia Correction = delta

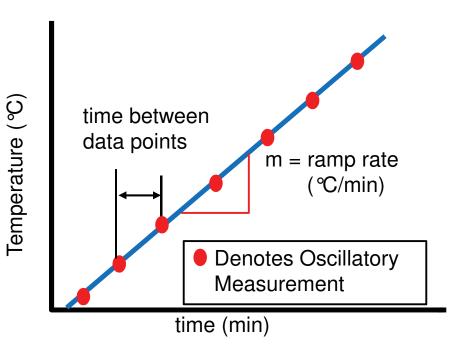
DHR Correction for Inertia

Access to <u>raw phase angle</u> only available with TA Instruments Rheometers!



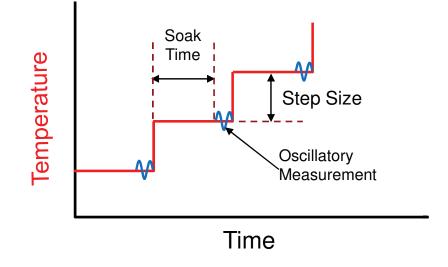
Frequency Sweeps in ARES-G2

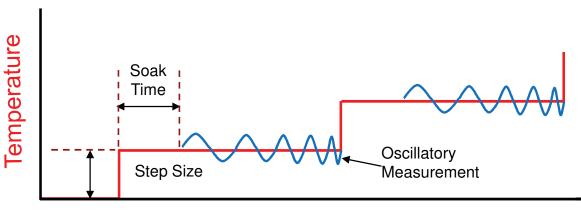
- ARES-G2 has a separate motor and transducer design.
 - In an ARES-G2, the motor applies the deformation independent of the torque measurement on the transducer.
 - The moment of inertia required to move the motor is decoupled from the torque measurements.
 - This means the motor inertia does not contribute to the test results.
- Benefits of ARES-G2:
 - System inertia free
 - Capable of running low viscosity samples up to high frequency



ARES-G2 Closed-Loop Control

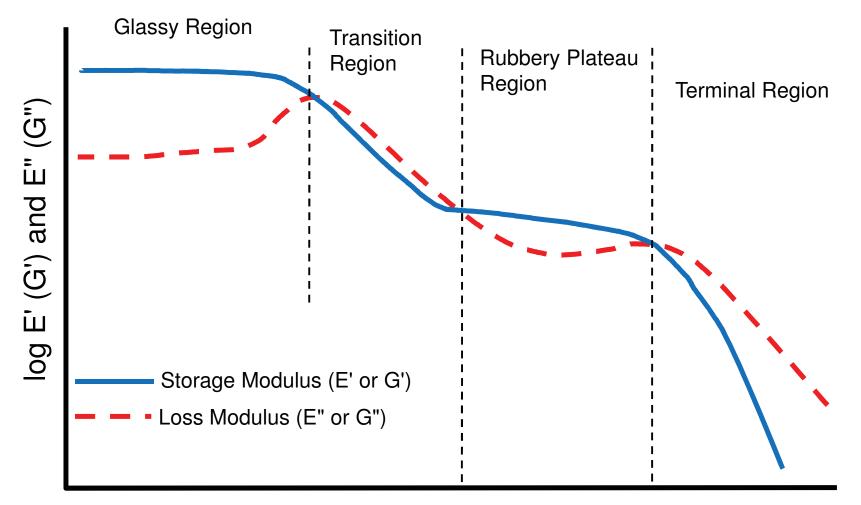
Dynamic Temperature Ramp


 A linear heating rate is applied. The material response is monitored at a constant frequency and constant amplitude of deformation. Data is taken at user defined time intervals.



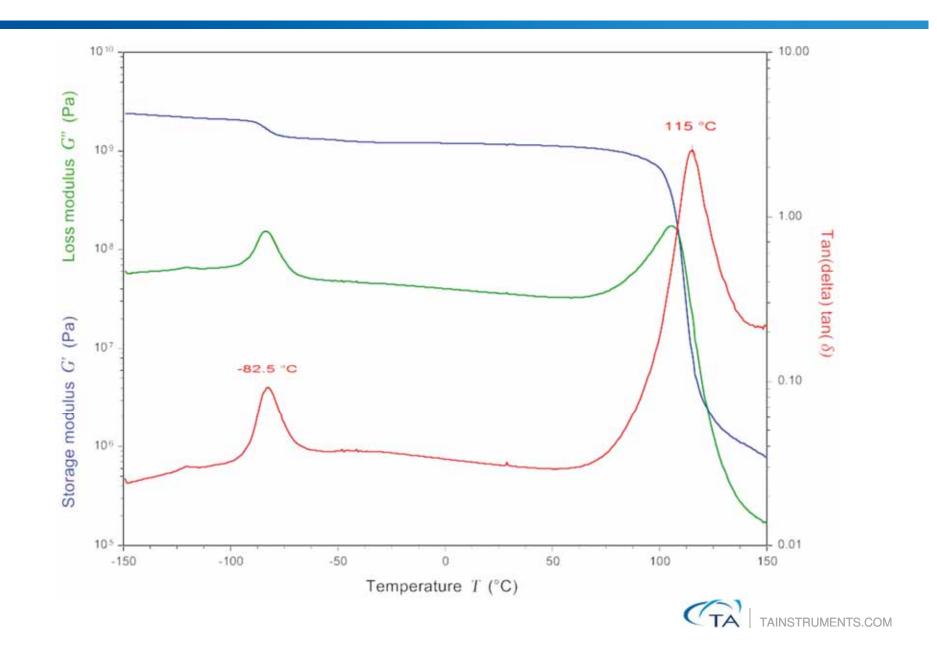
Temperature Sweep (or Step) - Single / Multi-Frequency

- A step and hold temperature profile is applied. The material response is monitored at one, or over a range of frequencies, at constant amplitude of deformation.
 - No thermal lag



Dynamic Temperature Ramp or Sweep: Material Response

Temperature

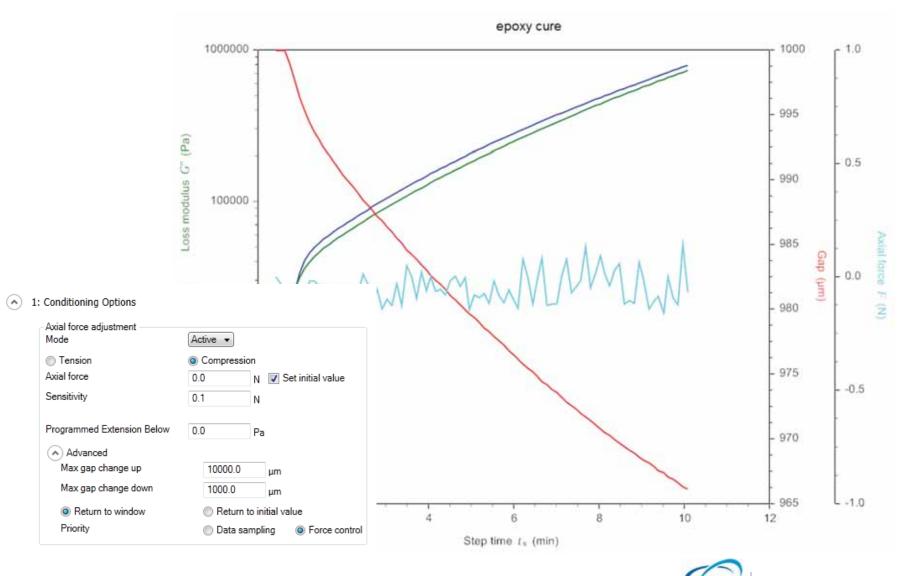


Why look at temperature dependence?

- Solid in torsion rectangular
 - Look at T_g, secondary transitions and study structureproperty relationships of finished product.
- Themosetting polymers
 - Follow curing reactions
- Polymer melts and other liquids
 - Measure temperature dependence of viscoelastic properties

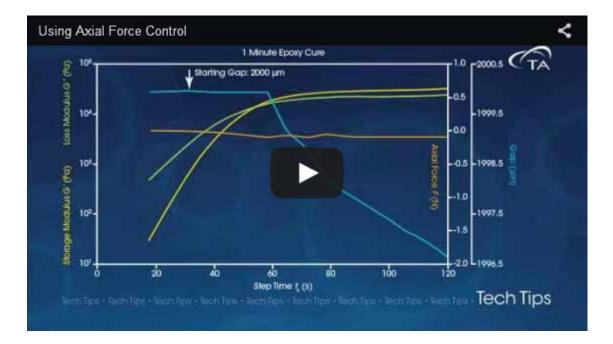
Acrylonitrile Butadiene Styrene (ABS)

DHR: Axial Force Control


1: Conditioning Options		
Axial force adjustment	레이크	
Mode	Active 💌	
C Tension	Compression	
Axial force	0 N 🔽 Set initial val	ue
Sensitivity	0.5 N	
Gap change limit up	1.0 mm	
Gap change limit down	1.0 mm	
Return to window	C Return to initial value	

~	2: Oscillation	Temperature R	≀amp °C,	100°C, 0).1%, 6.28rad/s	
---	----------------	---------------	----------	----------	-----------------	--

- It is important to setup normal force control during any temperature change testing or curing testing
- Some general suggestions for normal force control
 - For torsion testing, set normal force in tension: 1-2N ± 0.5-1.0N
 - For curing or any parallel plate testing, set normal force in compression: 0 ± 0.5N

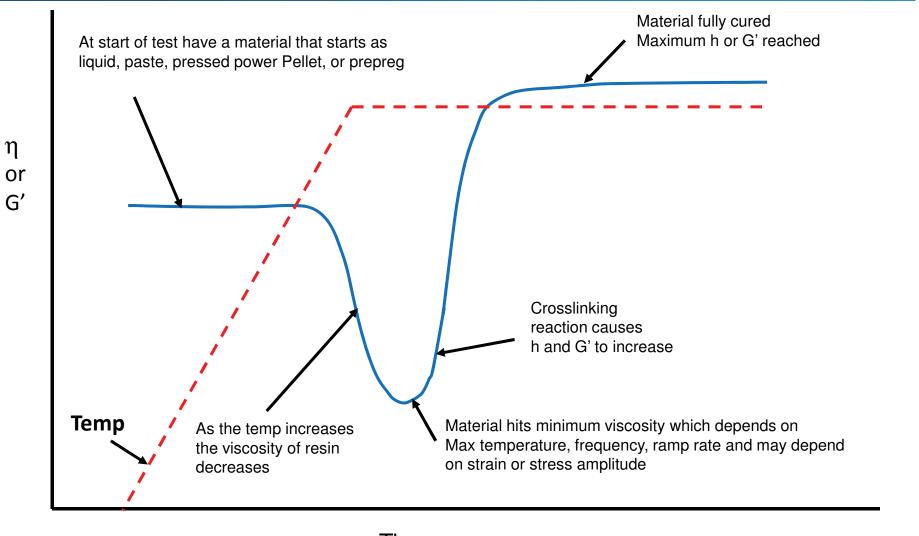


Using Axial Force Control in a Thermosetting Material

A TAINSTRUMENTS.COM

TA Tech Tip – Axial Force Control

 Videos available at <u>www.tainstruments.com</u> under the Videos tab or on the TA tech tip channel of YouTube[™] (<u>https://www.youtube.com/user/TATechTips</u>)



Cure or Thermoset Materials

- Cures are perhaps the most challenging experiments to conduct on rheometers as they challenge all instrument specifications both high and low.
- The change in modulus as a sample cures can be as large as 7-8 decades and change can occur very rapidly.
- AR, DHR, and ARES instruments have ways of trying to cope with such large swings in modulus
 - AR: Non-iterative sampling (w/ Axial force control)
 - DHR: Non-iterative sampling (w/ Axial force control) and Auto-strain (w/ Axial force active) in <u>TRIOS v3.2 or higher</u>
 - ARES: Auto-strain (w/ Axial force or auto-tension active)

Thermosetting Polymers

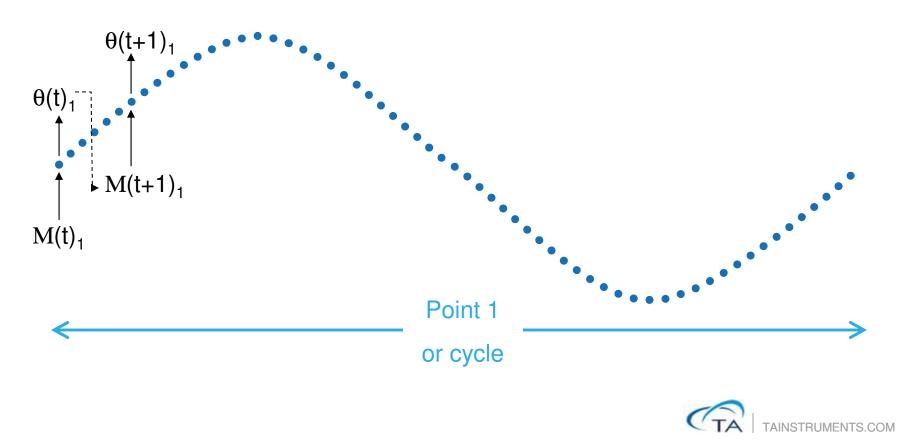
Time

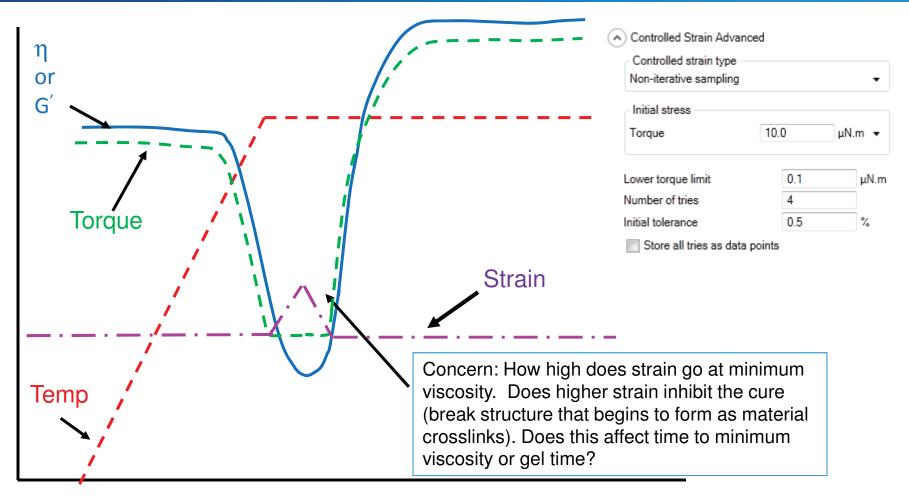
DHR and AR: Data Collection Options

* Procedure:			N
1: Conditioning Options 2: Oscillation Temperatu			
Environmental Control Start temperature Soak time Ramp rate End temperature Soak time after ramp Estimated time to comp	25 0.0 5.0 100 0.0	°C s °C/min °C s hh:mm:s	Use entered value Wait for temperature
Maximize number of poi	0.1	%	Controlled Strain Advanced
Controlled Strain Ac Controlled Strain typ Continuous oscillation	Angular frequency 6.28 rad/s • Controlled Strain Advanced Controlled strain type Continuous oscillation [direct strain] • Non-iterative sampling		Continuous oscillation [direct strain] Non-iterative sampling Precision sampling Continuous oscillation [direct strain]
Precision sampling Continuous oscilla	-		

 <u>Non-Iterative Sampling</u> – motor torque is adjusted based on previous stress value and predicts new value required to obtain the target strain (good for rapid measurements)

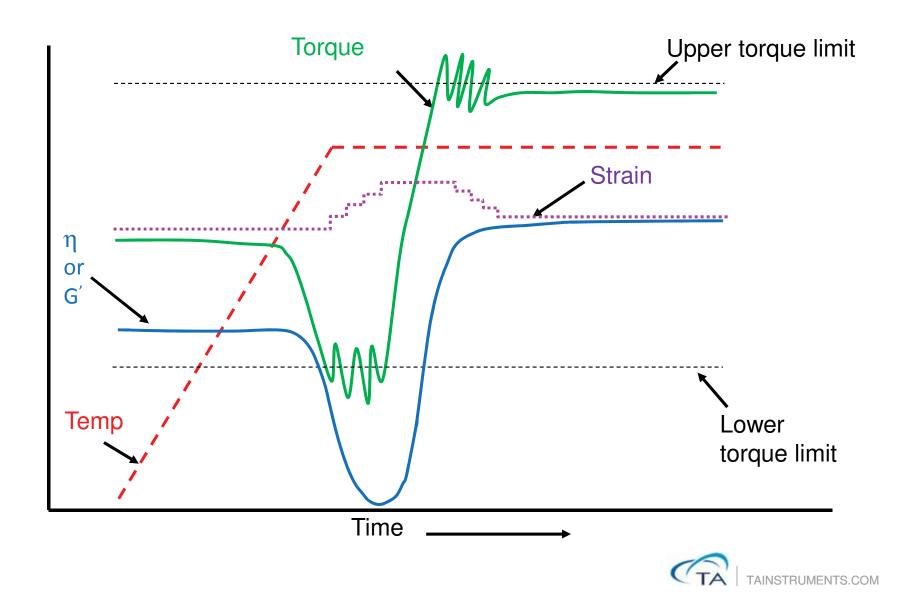
Precision Sampling – motor torque is adjusted at the end of an oscillation cycle in order to reach commanded strain


 <u>Continuous Oscillation (direct</u> <u>strain)*</u> – motor torque is adjusted during the oscillation cycle to apply the commanded strain


Continuous Oscillation on Single Head Rheometer

<u>Continuous oscillation (or direct strain control)</u>: incremental approach controls the strain and hits the target during a single cycle <u>Non-iterative</u>: uses the settings entered for the first data point and then uses previous cycle

Precision: iterates using the initial settings entered for each data point


DHR and AR: Non-iterative Sampling

Time ———

ARES, ARES-G2 and DHR: Auto-Strain

Axial Force Control and Auto-strain

ARES-G2

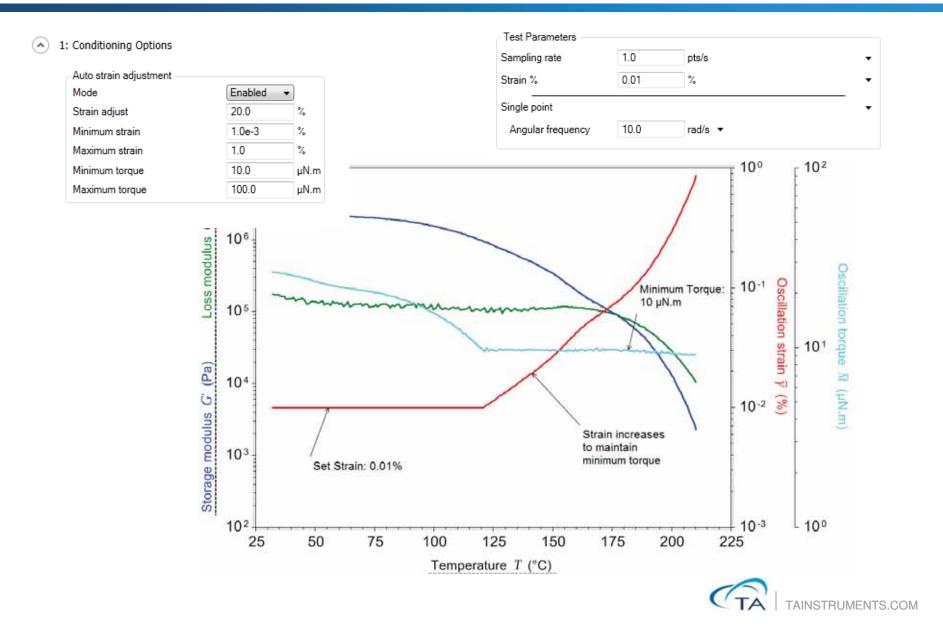
۲

1	: Conditioning Options	
	Axial force adjustment Mode	Active -
	Tension	Compression
	Axial force	2.0 N 📝 Set initial value
	Sensitivity	0.1 N
		Compensate for stiffness changes
	Advanced	
	Max gap change up	2.0 mm
	Max gap change down	0.5 mm
	Return to window	Return to initial value
	Priority	Data sampling Force control
	Adjustment time out	2.0 s

Mode	Enabled	-
Strain adjust	20.0	%
Minimum strain	0.01	%
Maximum strain	5.0	%
Minimum torque	1.0	μN.m
Maximum torque	500.0	μN.m

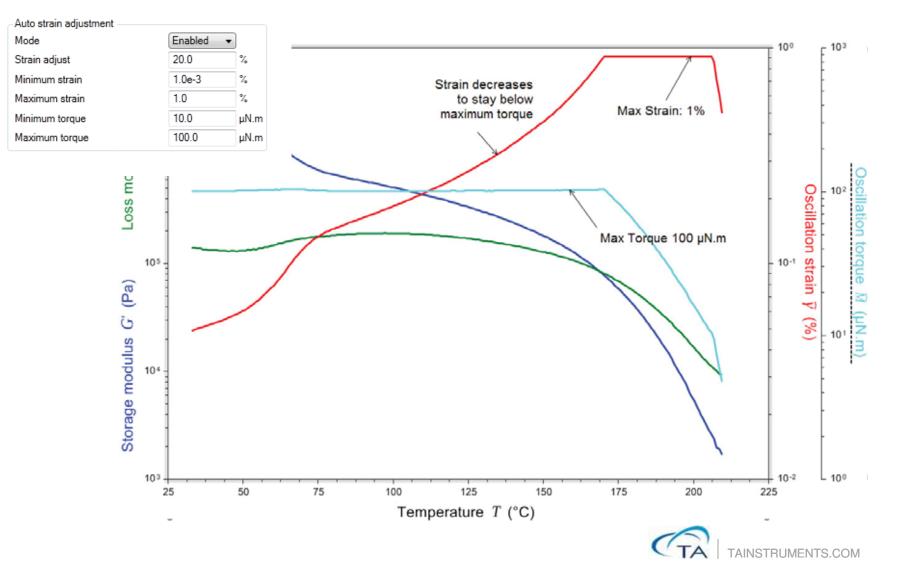
DHR

1: Conditioning Options


Active 👻	
Compression	
0.0	g 👿 Set initial value
20.0	g
1000.0	μm
1000.0	μm
Return	to initial value
	 Compress 0.0 20.0 1000.0 1000.0

Purge gas only (no active cooling)

Auto strain adjustment		
Mode	Enabled •	
Strain adjust	20.0	%
🔘 Displacement 🛛 🔘 Strain	% Strain	
Minimum % strain	0.0	%
Maximum % strain	0.0	%
Torque O Stress		
Minimum torque	0.0	μN.m
Maximum torque	0.0	μN.m



Using Auto Strain in a Temperature Ramp- Up

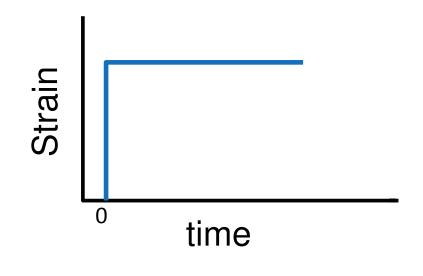
Using Auto Strain in a Temperature Ramp- Down

1: Conditioning Options

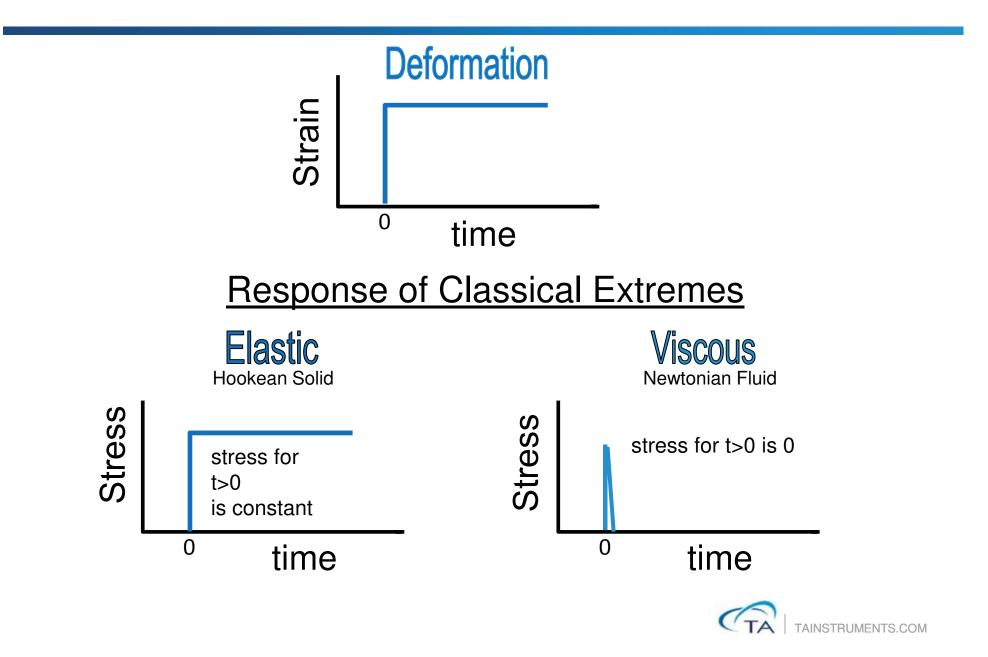
Thermoset Testing Considerations

Strain

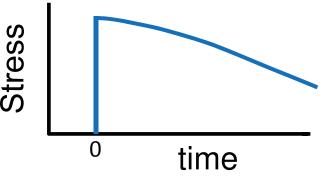
- Depends on sample
- Verify the LVR in the cured state (e.g. 0.05%)
- Normal force control or auto-tension
 - Requires active to adjust for sample shrinkage and/or thermal expansion in parallel plates
- Temperature
 - Isothermal
 - Fast ramp + isotherm: the fastest ramp rate
 - Continuous ramp rate: 3 5 °C/min.
- Frequency
 - Typically 1Hz (6.28 rad/s), 10 rad/s or higher



Setting up Rheological Experiments Transient Tests

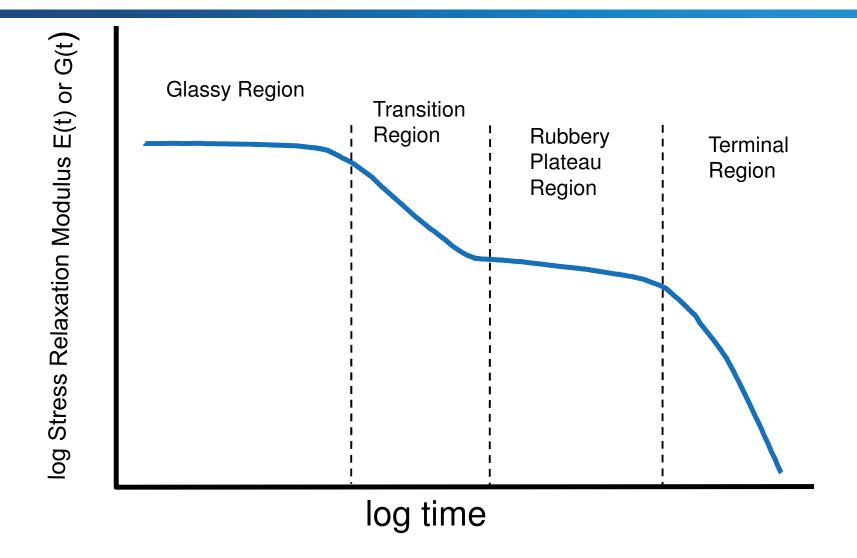

Stress Relaxation Experiment

- Strain is applied to sample instantaneously (in principle) and held constant with time.
- Stress is monitored as a function of time $\sigma(t)$.
- DHR and AR
 - Response time dependent on feedback loop

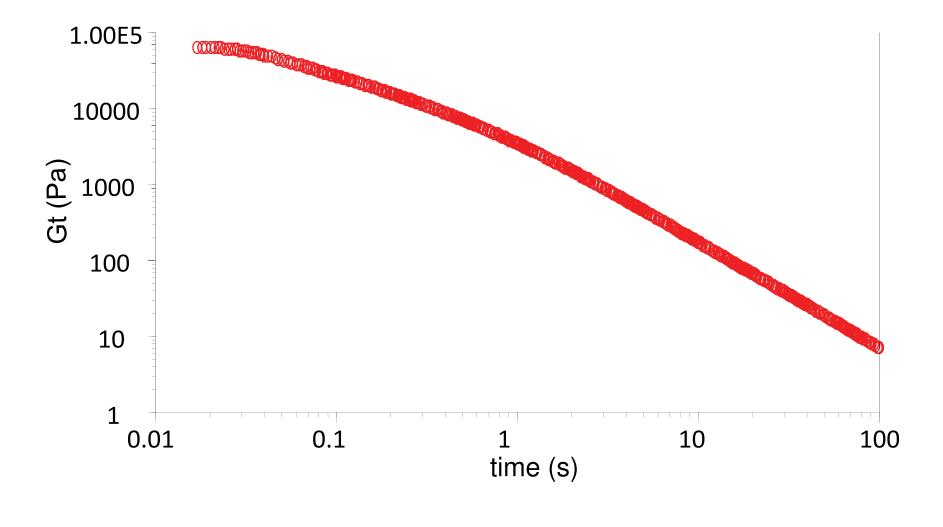

Stress Relaxation Experiment

Stress Relaxation Experiment

Response of ViscoElastic Material


Stress decreases with time starting at some high value and decreasing to zero.

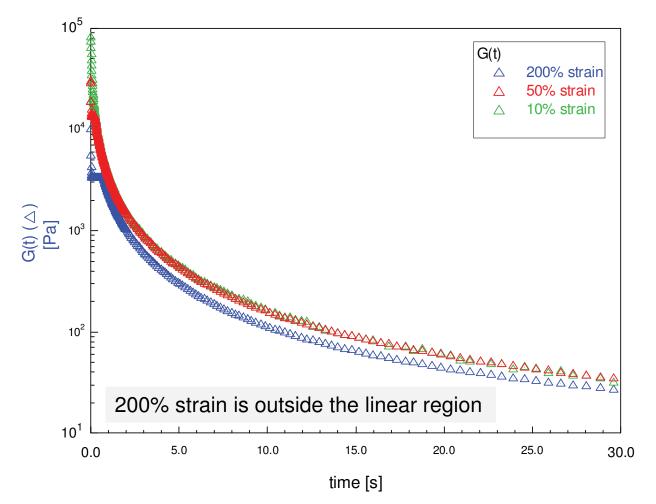
- For small deformations (strains within the linear region) the ratio of stress to strain is a function of time only.
- This function is a material property known as the STRESS RELAXATION MODULUS, G(t) G(t) = σ(t)/γ



Stress Relaxation: Material Response

Stress Relaxation on PDMS

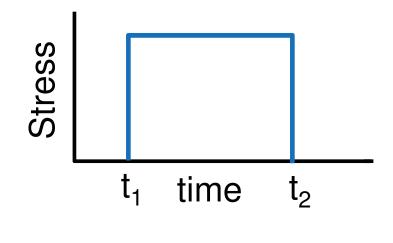
Determining Strain For Stress Relaxation


- Research Approach, such as generation of a family of curves for TTS, then the strain should be in the linear viscoelastic region. The stress relaxation modulus will be independent of applied strain (or will superimpose) in the linear region.
- Application Approach, mimic real application. Then the question is "what is the range of strain that I can apply on the sample?" This is found by knowing the Strain range the geometry can apply.
 - The software will calculated this for you.

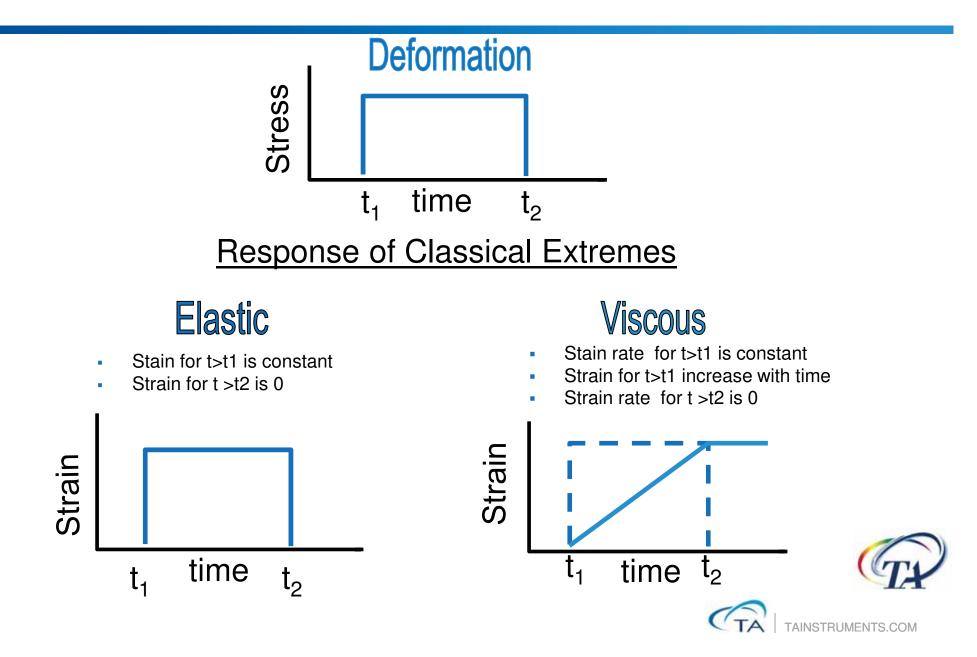
 $\gamma = K_{\gamma} \times \Theta$ (% $\gamma = \gamma \times 100$)

Stress Relaxation and Linear Region

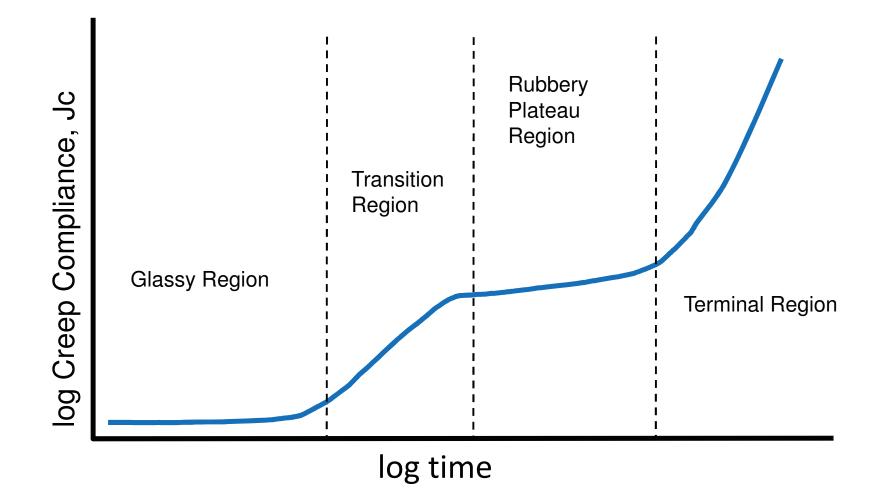
Stress Relaxation of PDMS, Overlay



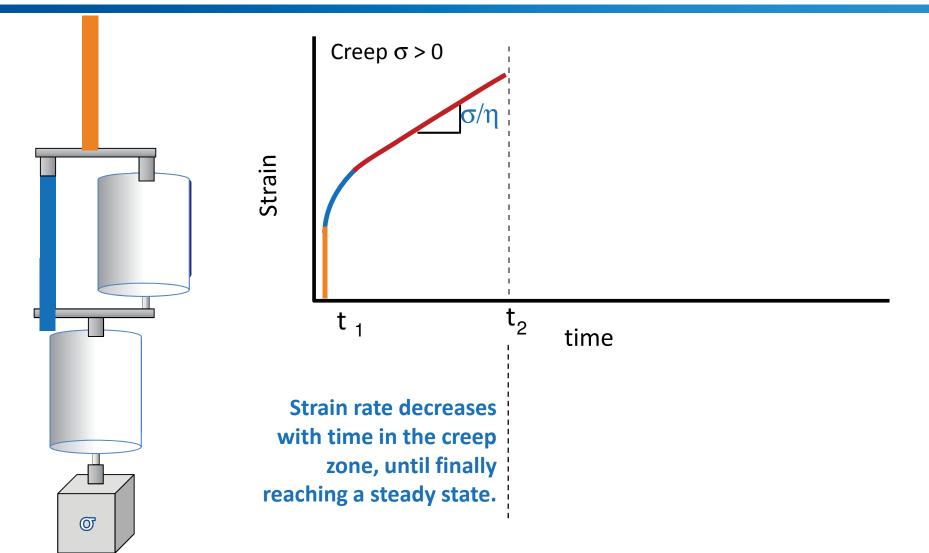
Creep Recovery Experiment


• Stress is applied to sample instantaneously, t_1 , and held constant for a specific period of time. The strain is monitored as a function of time ($\gamma(t)$ or $\epsilon(t)$)

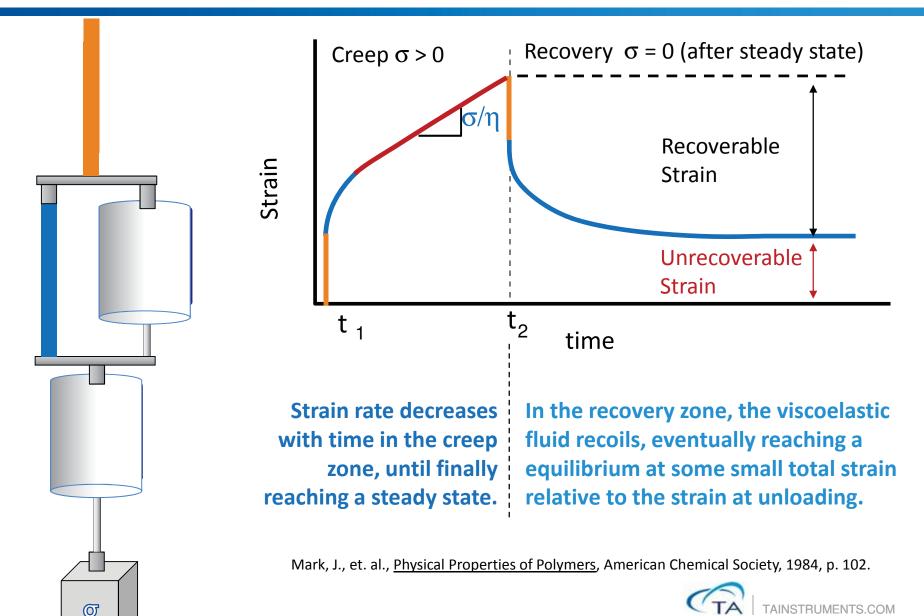
- The stress is reduced to zero, t_2 , and the strain is monitored as a function of time ($\gamma(t)$ or $\varepsilon(t)$)
- Native mode on AR (<1 msec)</p>

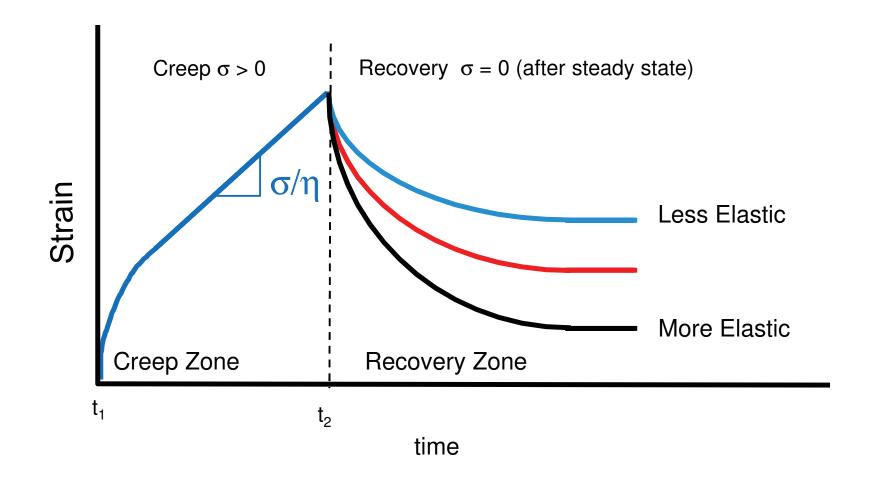


Creep Recovery Experiment

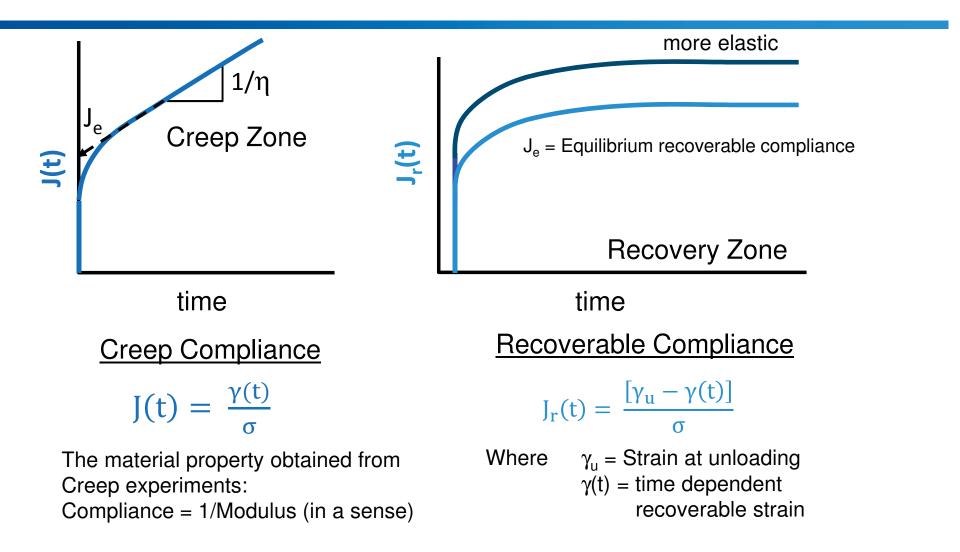


Creep: Material Response

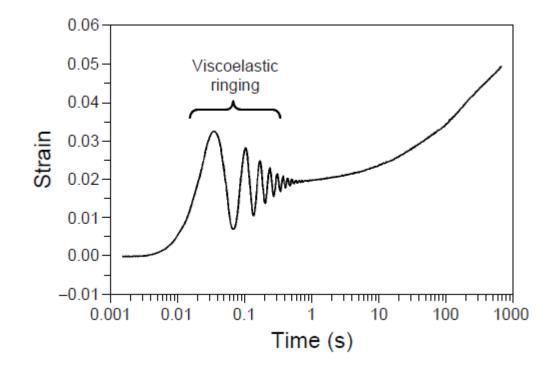

Creep Recovery: Response of Viscoelastic Material


Mark, J., et. al., <u>Physical Properties of Polymers</u>, American Chemical Society, 1984, p. 102.

Creep Recovery: Response of Viscoelastic Material

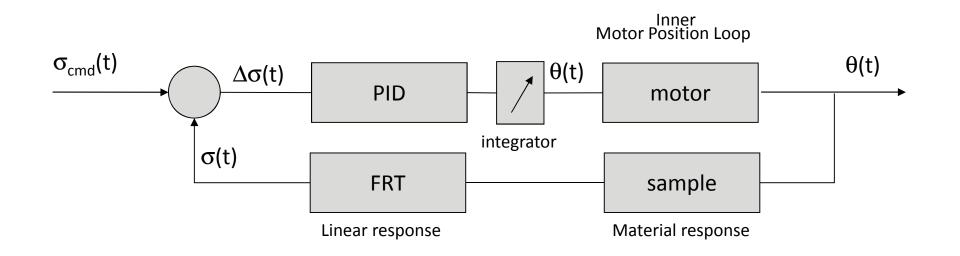


Creep Recovery Experiment


Creep Recovery : Creep and Recoverable Compliance

Mark, J., et. al., <u>Physical Properties of Polymers</u>, American Chemical Society, 1984, p. 102.

Viscoelastic Ringing – DHR or AR


• The ringing oscillations can be rather short-lived and may not be apparent unless using log time scale.

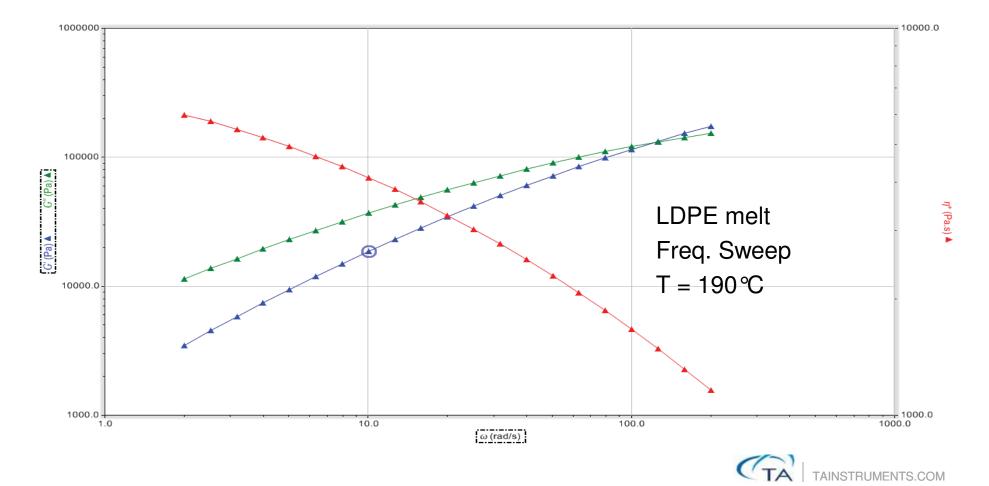
• The sudden acceleration, together with the measurement system's inertia, causes a strain overshoot. For viscoelastic materials, this can result in viscoelastic ringing, where the material undergoes a damped oscillation just like a bowl of Jell-o when bumped.

<u>Creep ringing in rheometry or how to deal with oft-discarded data in step stress tests!</u> RH Ewoldt, GH McKinley - Rheol. Bull, 2007

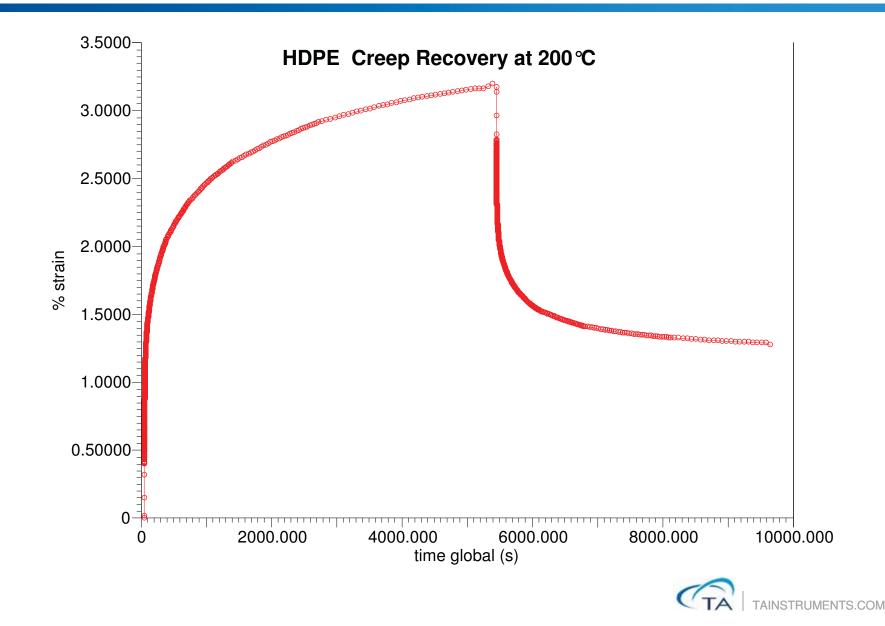
ARES-G2 Stress Control Loop

- Stress is controlled by closing the loop around the sample → requires optimization of control PID parameters
- Pretest to determine material's response and PID Constants

Programming Creep on an ARES-G2


- Set up a pre-test and get the sample information into the loop
- Stress Control Pre-test: frequency sweep within LVR

Experiment 2]						
Sample: PET film LN2 only						
Geometry: Tension fixture (rectangle)						
Procedure of 2 steps						
1: Conditioning Stress Control						
Load Precomputed Run and Calculate Environmental Control Temperature 30 °C Inherit set point Soak time 60.0 s Wait for temperature Test Parameters						
Strain % 0.05 %						
Save stress control PID file Stress control PID file path: W:\2011\creep.creep Save File Data acquisition						



ARES-G2 Stress Control Pretest

Pretest \rightarrow Frequency Sweep from 2 to 200 rad/s \rightarrow data analyzed in software to optimize Motor loop control PID constants

Creep on HDPE Melt

Determining Stress For Creep Experiment

- Research Approach If you are doing creep on a polymer melt, and are interested in viscoelastic information (creep and recoverable compliance), then you need to conduct the test at a stress within the linear viscoelastic region of the material.
- Application Approach If you are doing creep on a solid, you want to know the dimension change with time under a specified stress and temperature, then the questions is "what is the max/min stress that I can apply to the sample?". This is found by knowing the Stress range the geometry can apply.
 - The software will calculated this for you.

 $\sigma = K_{\sigma} \times M$

Applications of Rheology Polymers

Purpose of a Rheological Measurement

Three main reasons for rheological testing:

- Characterization
 - MW, MWD, formulation, state of flocculation, etc.
- Process performance

Extrusion, blow molding, pumping, leveling, etc.

Product performance

Strength, use temperature, dimensional stability, settling stability, etc.

Polymer Testing and Rheology

Molecular Structure

MW and MWD

Chain Branching and Cross-linking

- Interaction of Fillers with Matrix Polymer
- Single or Multi-Phase Structure

Viscoelastic Properties

As a function of:

- Strain Rate(frequency)
 - Strain Amplitude
- Temperature

Processability & Product Performance

Rheology Applications in Polymers

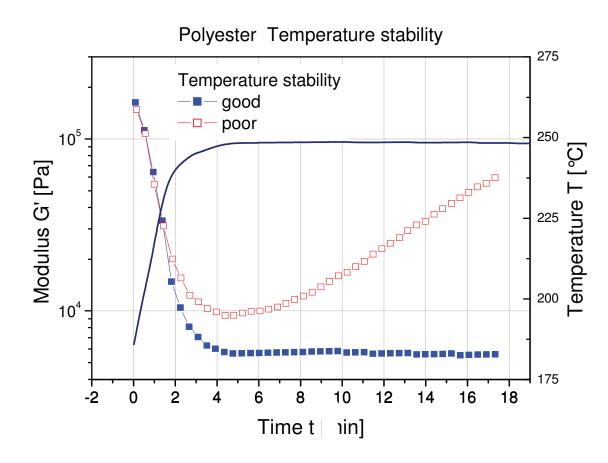
Material	Property
Composites, Thermosets	Viscosity, Gelation, Rate of Cure, Effect of Fillers and Additives
Cured Laminates	Glass Transition, Modulus Damping, impact resistance, Creep, Stress Relaxation, Fiber orientation, Thermal Stability
Thermoplastics	Blends, Processing effects, stability of molded parts, chemical effects
Elastomers	Curing Characteristics, effect of fillers, recovery after deformation
Coating, Adhesives	Damping, correlations, rate of degree of cure, glass transition temperature, modulus

Most Common Experiments on Polymers

Oscillation/Dynamic

- Time Sweep
 - Degradation studies, stability for subsequent testing
- Strain Sweep Find LVER
- Frequency Sweep G['], G["], η^{*}
 - Sensitive to MW/MWD differences melt flow can not see
- Temperature Ramp/Temperature Step
 - Transitions, viscosity changes
- TTS Studies

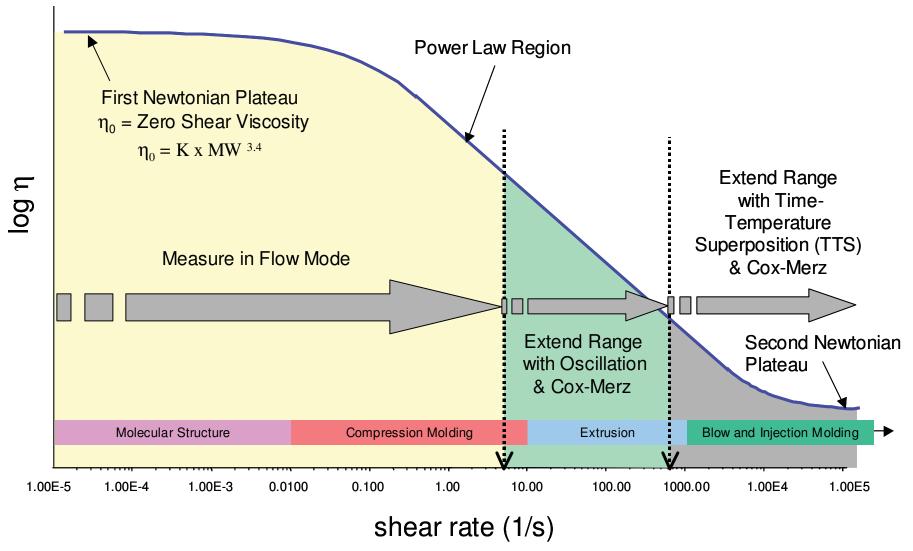
Flow/Steady Shear


- Viscosity vs. Shear Rate Plots
- Find Zero Shear Viscosity
- Low shear information is sensitive to MW/MWD differences melt flow can not see

Creep and Recovery

- Creep Compliance/Recoverable Compliance
- Very sensitive to long chain tails

Polymer Melt Thermal Stability


Determines if properties are changing over the time of testing

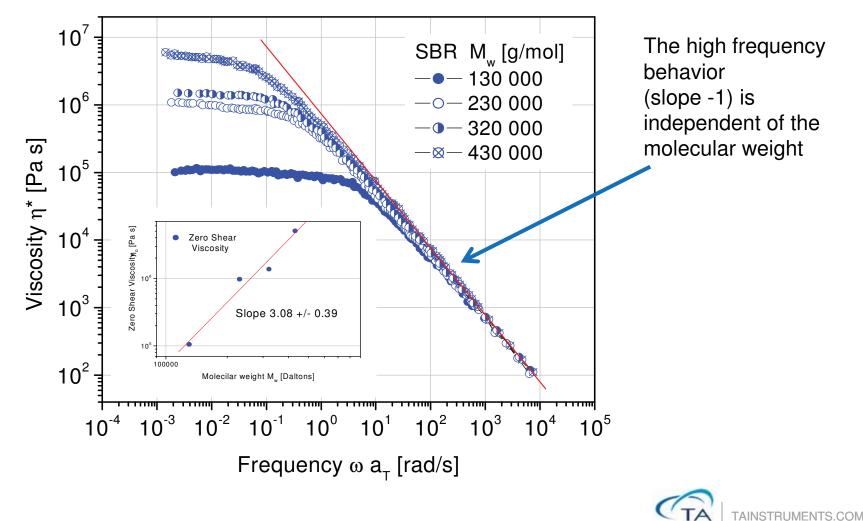
- Degradation
- Molecular weight building
- Crosslinking

Important, but often overlooked!

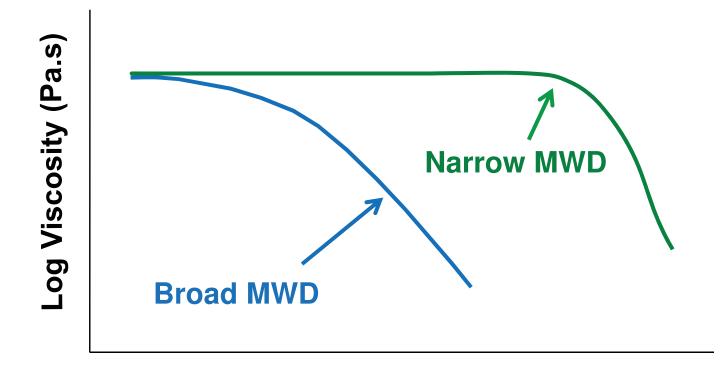

Idealized Flow Curve – Polymer Melts

Melt Rheology: MW Effect on Zero Shear Viscosity

- Sensitive to Molecular Weight, MW
- For Low MW (no Entanglements) η_0 is proportional to MW
- For MW > Critical MW_c, η_0 is proportional to MW^{3.4}



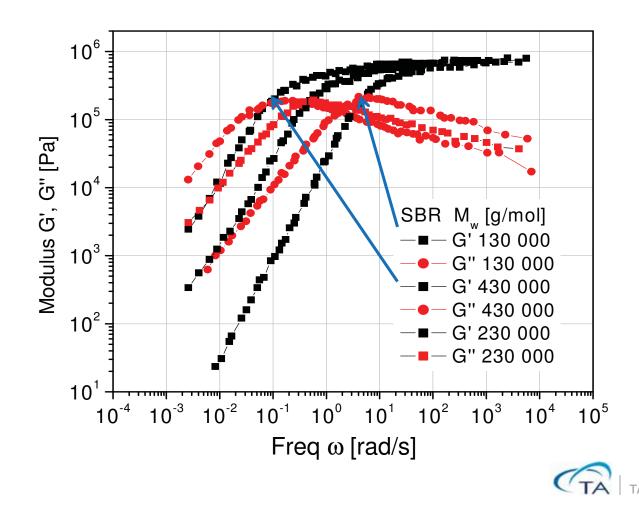
Ref. Graessley, Physical Properties of Polymers, ACS, c 1984.


Influence of MW on Viscosity

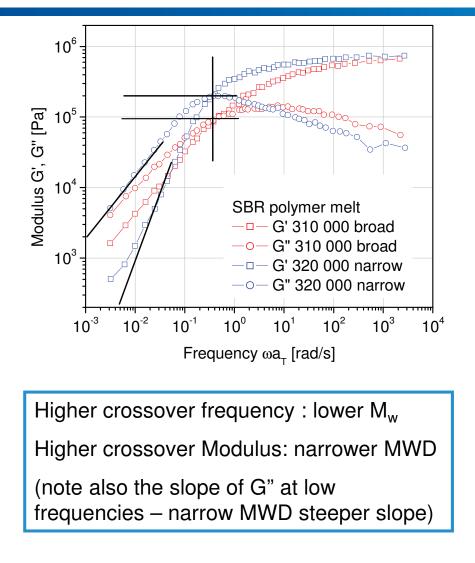
The zero shear viscosity increases with increasing molecular weight. TTS is applied to obtain the extended frequency range.

Influence of MWD on Viscosity

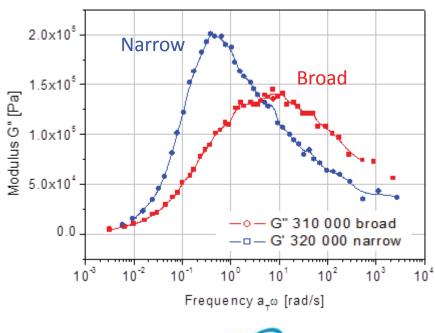
• A Polymer with a broad MWD exhibits non-Newtonian flow at a lower rate of shear than a polymer with the same η_0 , but has a narrow MWD.



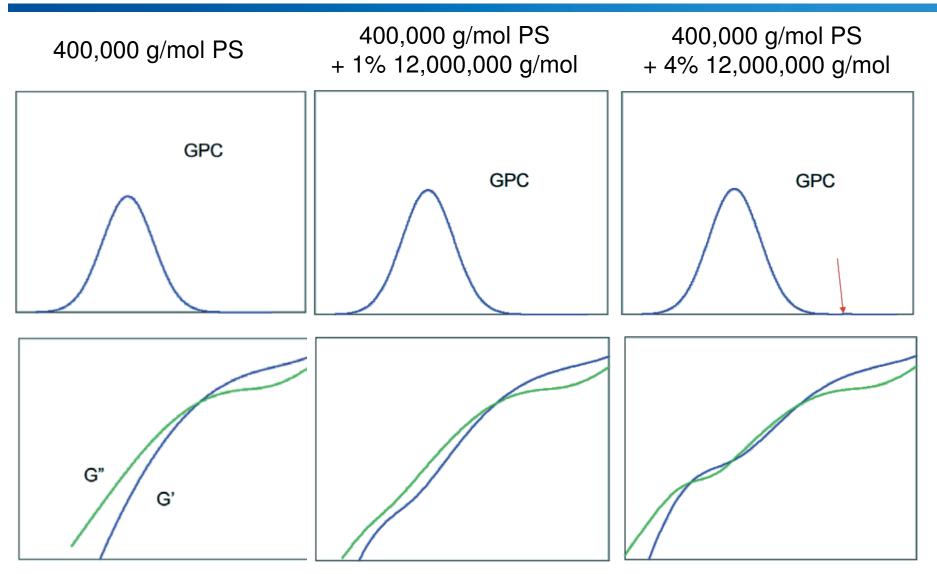
Log Shear Rate (1/s)



Influence of MW on G' and G"

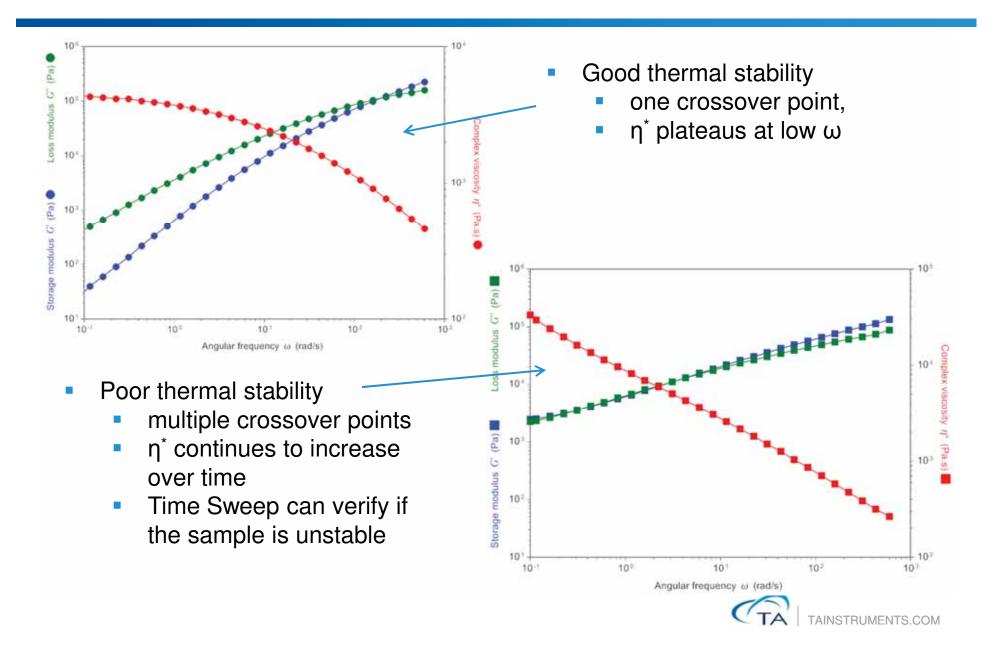

The G' and G" curves are shifted to lower frequency with increasing molecular weight.

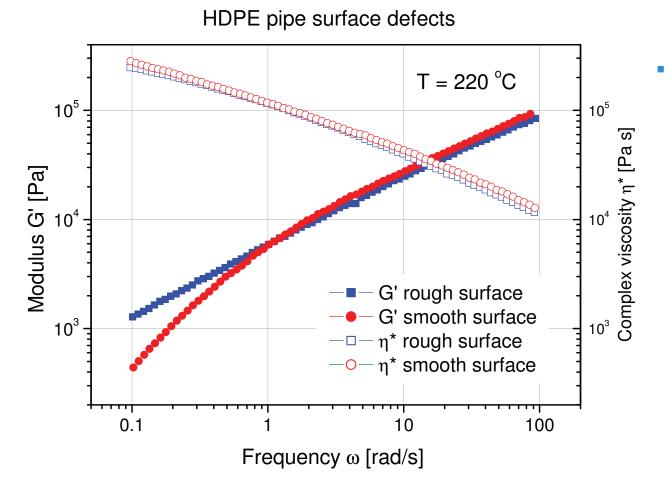
Influence of MWD on G' and G"



 The maximum in G" is a good indicator of the broadness of the distribution

TAINSTRUMENTS.COM


High MW Contributions


Macosko, TA Instruments Users' Meeting, 2015

Importance of Verifying Thermal Stability

Surface Defects during Pipe Extrusion

Surface roughness correlates with G⁺ or elasticity → broader MWD or tiny amounts of a high MW component

Blue-labled sample shows a rough surface after extrusion

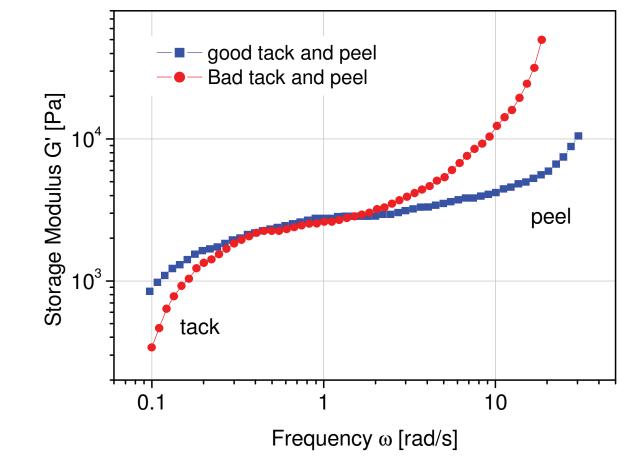
Tack and Peel of Adhesives

Bond strength is

(fast) and tack

(slow) tests

obained from peel

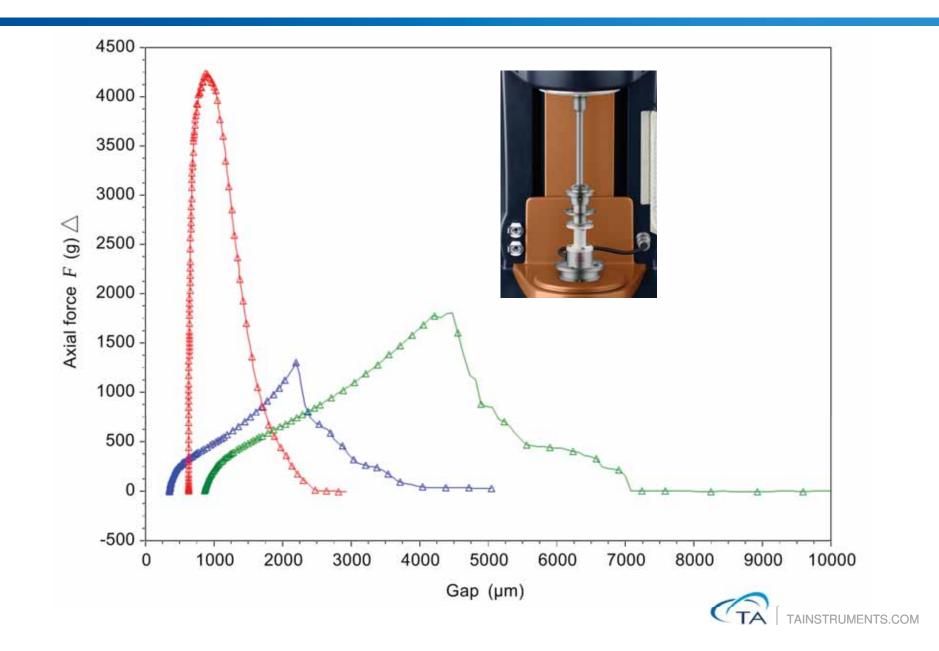

It can be related to

the viscoelastic

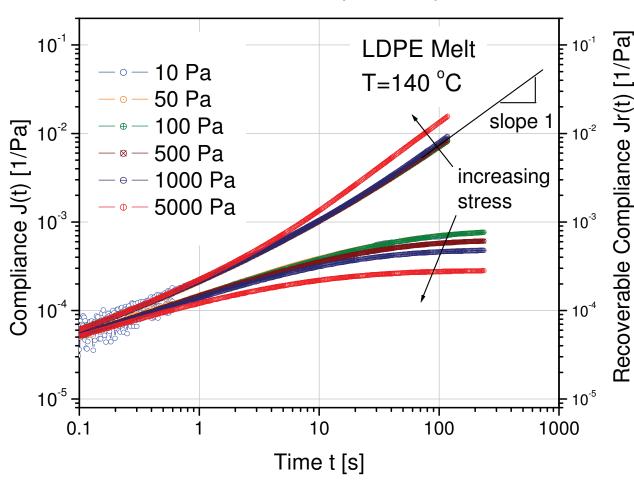
properties at

frequencies

different

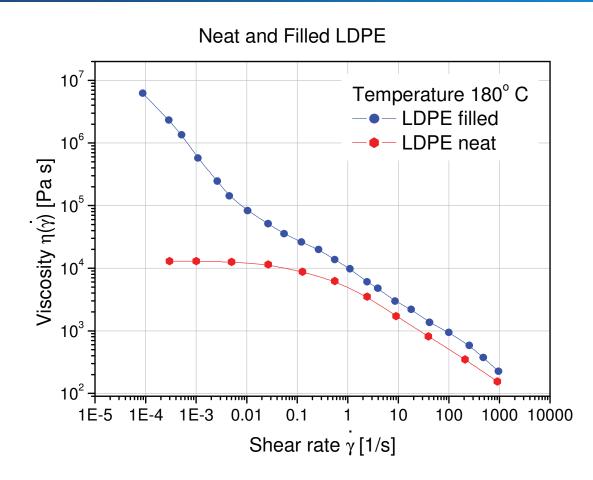


Tack and Peel performance of a PSA


Tack and peel have to be balanced for an ideal adhesive

Dried Adhesives- Tack Test

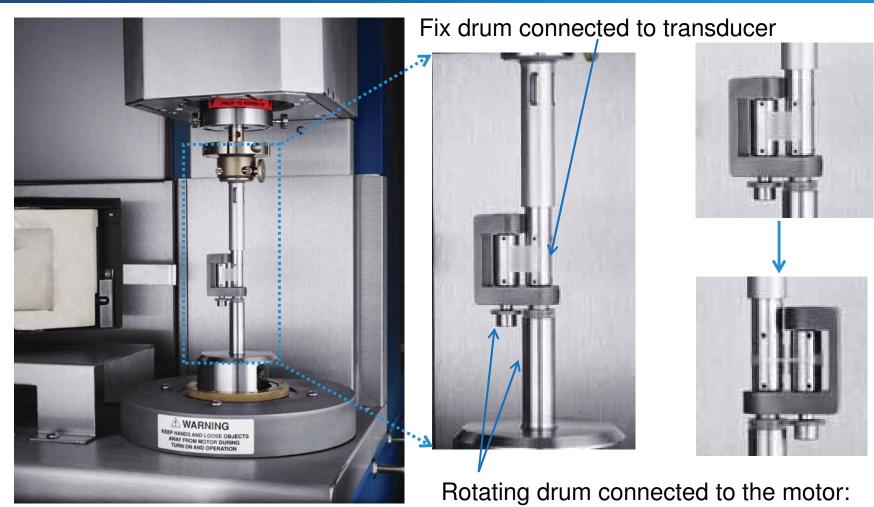
Creep and Recovery with Increasing Stress



LDPE Melt creep recovery

 Non linear effects can be detected in recovery before they are seen in the creep (viscosity dominates)

Effect of Filler on Melt Viscosity

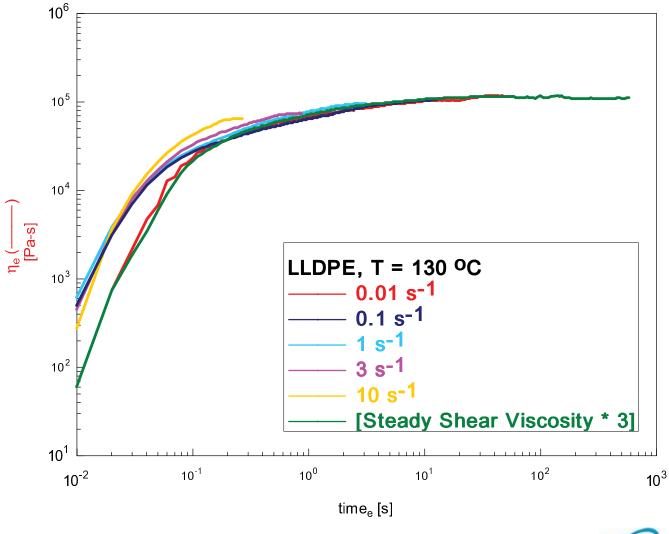


- Fillers increase the melt viscosity
- Due to inter-particle interactions, the non-Newtonian range is extended to low shear rates and the zero shear viscosity increases dramatically

The material has a yield, when rate and viscosity are inverse proportional at low rate.

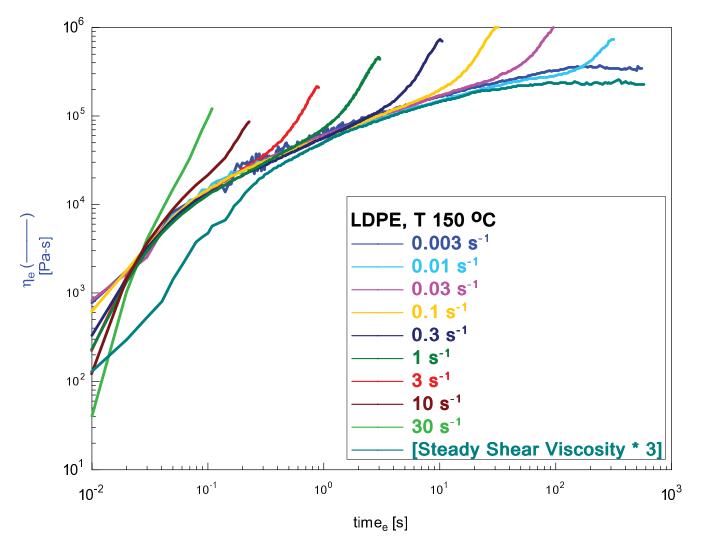
Extensional Viscosity Measurements

- rotates around its axis
- rotates around axis of fixed drum



Why is Elongation Viscosity Important?

- <u>Application to processing</u>: many processing flows are elongation flows - testing as close as possible to processing conditions (spinning, coating, spraying)
- <u>Relation to material structure</u>: non linear elongation flow is more sensitive for some structure elements than shear flows (branching, polymer architecture)
- <u>Testing of constitutive equations</u>: elongation results in addition to shear data provide a more general picture for developing material equations



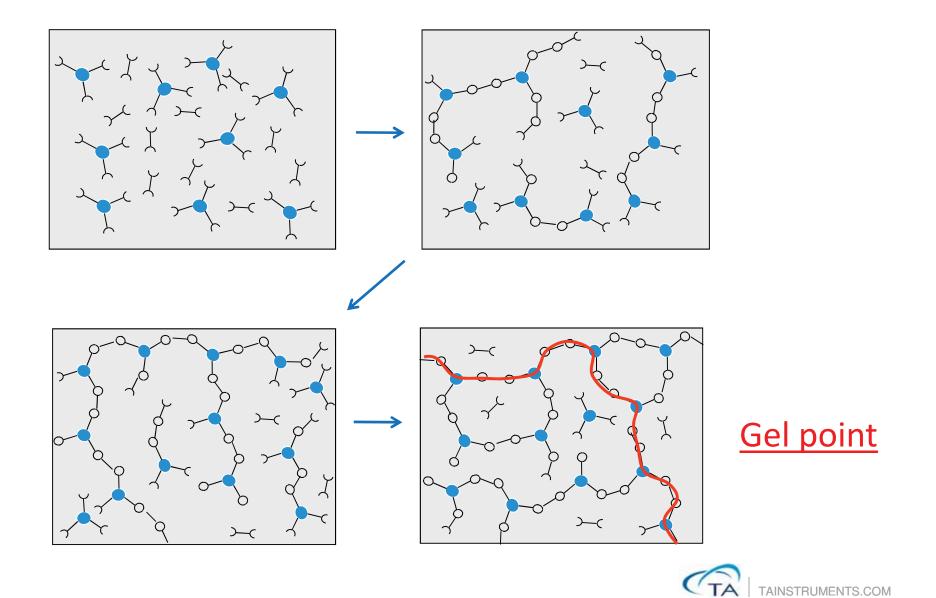
LLDPE (Low branching)

LDPE (High branching)

Thermosetting Polymers

 Thermosetting polymers are perhaps the most challenging samples to analyze on rheometers as they challenge all instrument specifications both high and low.

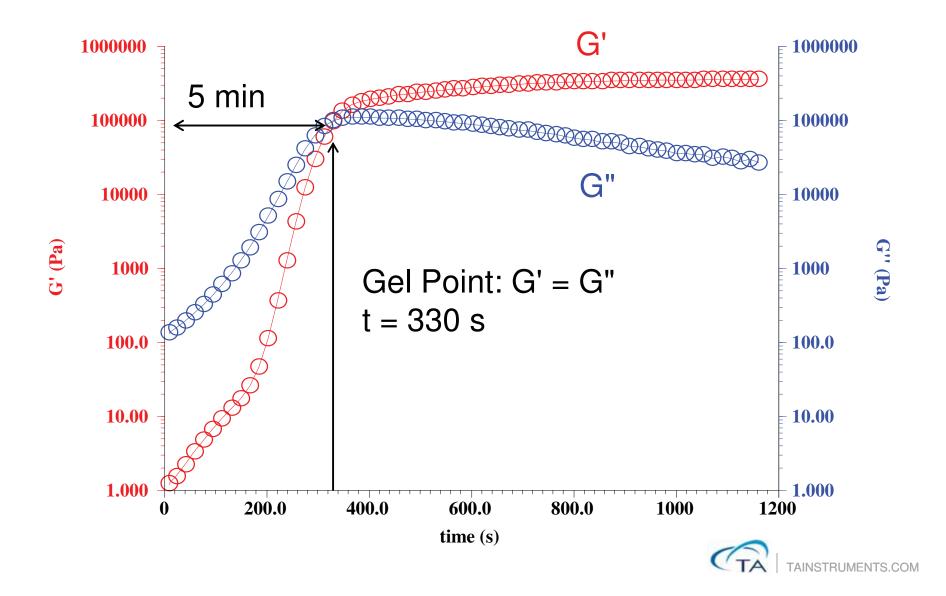
 The change in modulus as a sample cures can be as large as 7-8 decades and change can occur very rapidly.



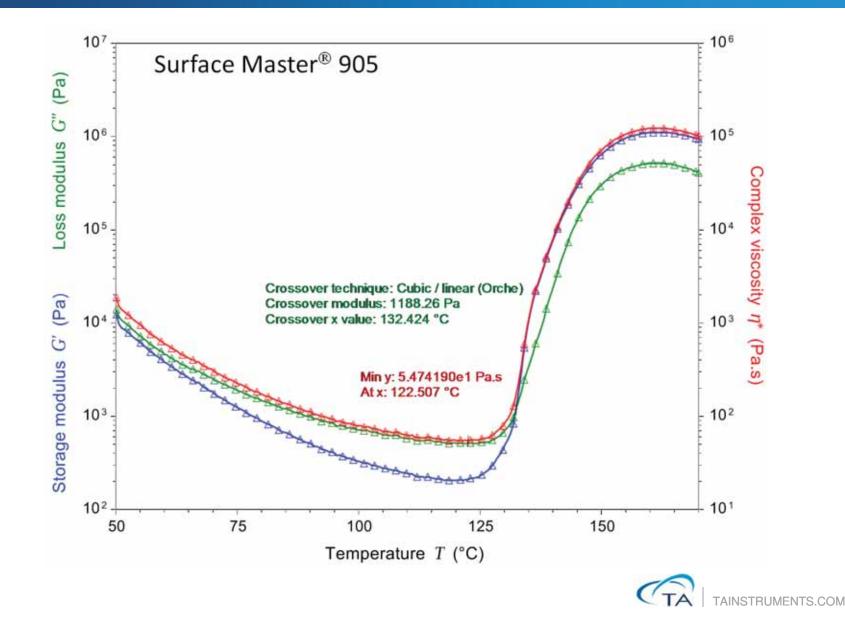
Thermosets Analysis

- Monitor the curing process
 - Viscosity change as function of time or temperature
 - Gel time or temperature
- Test methods for monitoring curing
 - Temperature ramp
 - Isothermal time sweep
 - Combination profile to mimic process
- Analyze cured material's mechanical properties (G', G', tan δ , T_q etc.)

Structural Development During Curing


At the Gel Point

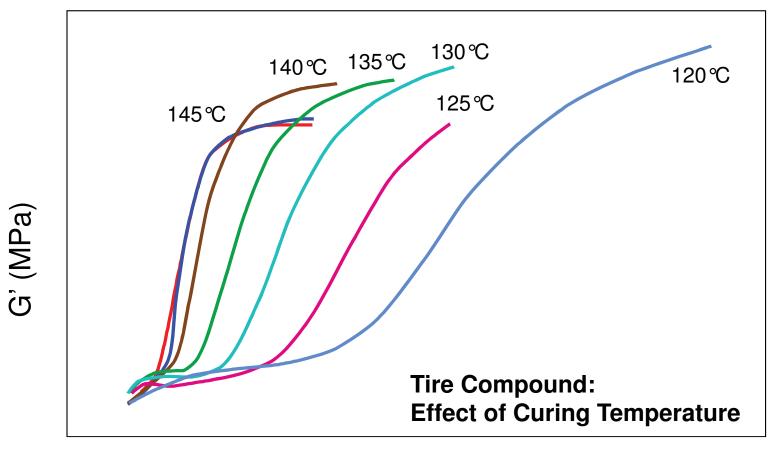
- Molecular weight M_w goes to infinity
- System loses solubility
- Zero shear viscosity goes to infinity
- Equilibrium Modulus is zero and starts to rise to a finite number beyond the gel point


Note: For most applications, gel point can be considered as when G' = G'' and tan $\delta = 1$

Curing Analysis: Isothermal Curing

Thermoset Using a Temperature Ramp

- The process of viscosity increasing takes place in two stages: the gelation process (frequency independent) and vitrification (related to the network Tg relative to cure temperature and <u>is</u> frequency dependent).
- When you look at an isothermal cure at a constant frequency the modulus crossover point has both the information of gelation and vitrification.
 - To avoid this, run multiple isothermal runs at different frequencies and plot the cross over in tan delta. This is the frequency independent gel point.
 - Alternatively, use a single mutliwave test



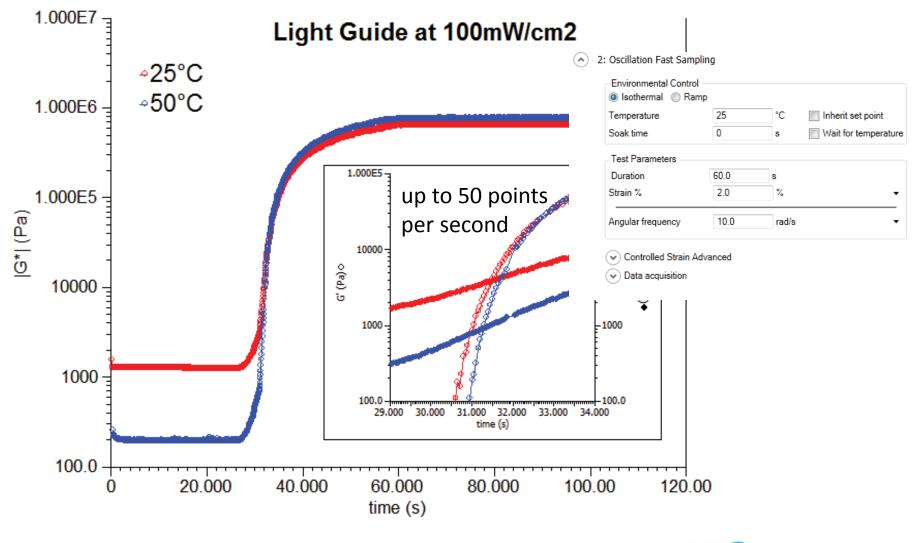
Gel Point using Tan Delta

UV Cure Test

Isothermal Curing

Time (min)

UV Light Guide Curing Accessory



- Collimated light and mirror assembly insure uniform irradiance
- Maximum intensity at plate 300 mW/cm²
- Broad range spectrum with main peak at 365 nm
- Cover with nitrogen purge ports
- Optional disposable acrylic plates

UV Cure Profile Changes with Temperature

Polymer Structure-Property Characterization

- Glass transition
- Secondary transitions
- Crystallinity
- Molecular weight/cross-linking
- Phase separation (polymer blends, copolymers,...)
- Composites
- Aging (physical and chemical)
- Curing of networks
- Orientation
- Effect of additives

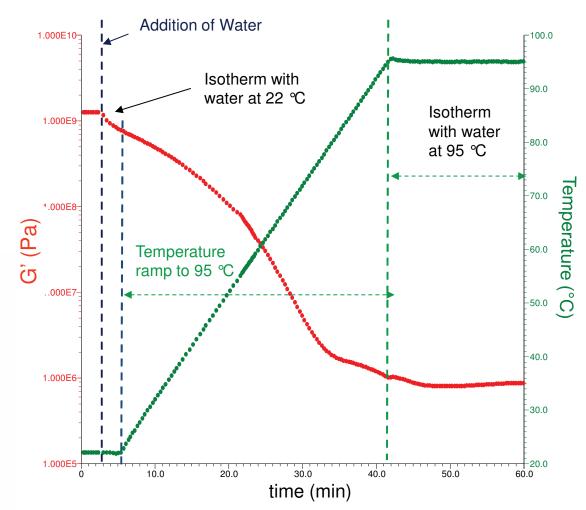
Reference: Turi, Edith, A, Thermal Characterization of Polymeric Materials, Second Edition, Volume I., Academic Press, Brooklyn, New York, P. 489.

How to Measure Glass Transition

G'Onset: Occurs at lowest temperature - Relates to mechanical failure

G" Peak: Occurs at middle temperature - more closely related to the physical property changes attributed to the glass transition in plastics. It reflects molecular processes - agrees with the idea of T_g as the temperature at the onset of segmental motion.

tan δ Peak: Occurs at highest temperature - used historically in literature - a good measure of the "leatherlike" midpoint between the glassy and rubbery states - height and shape change systematically with amorphous content.


Reference: Turi, Edith, A, Thermal Characterization of Polymeric Materials, Second Edition, Volume I., Academic Press, Brooklyn, New York, P. 980.

Pasta Cooked in Torsion Immersion

- Allows samples to be characterized while fully immersed in a temperature controlled fluid using Peltier Concentric Cylinder Jacket
- Track changes in mechanical properties such as swelling or plasticizing

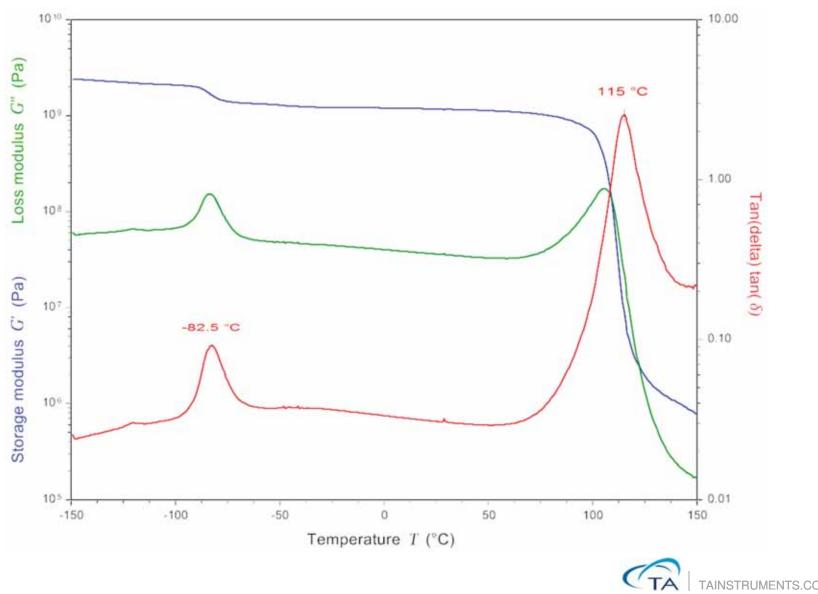
Testing Solids on a Rheometer

 Torsion and DMA geometries allow solid samples to be characterized in a temperature controlled environment _ DMA functionality is standard with ARES G2 and optional DHR

E = 2G(1 + v) v : Poisson's ratio

Modulus: G', G", G*

Rectangular and cylindrical torsion

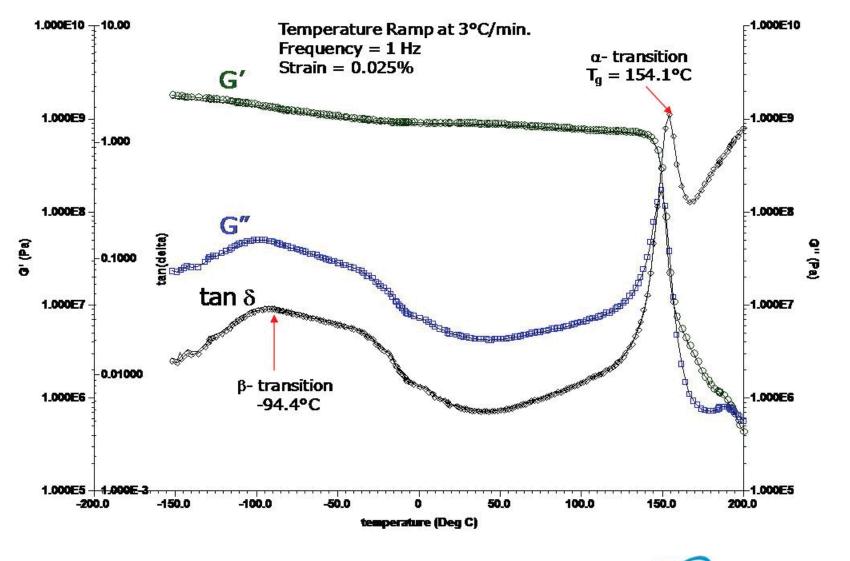

Modulus: E', E", E*

DMA 3-point bending and tension (Cantilever not shown)

Glass Transition-ABS

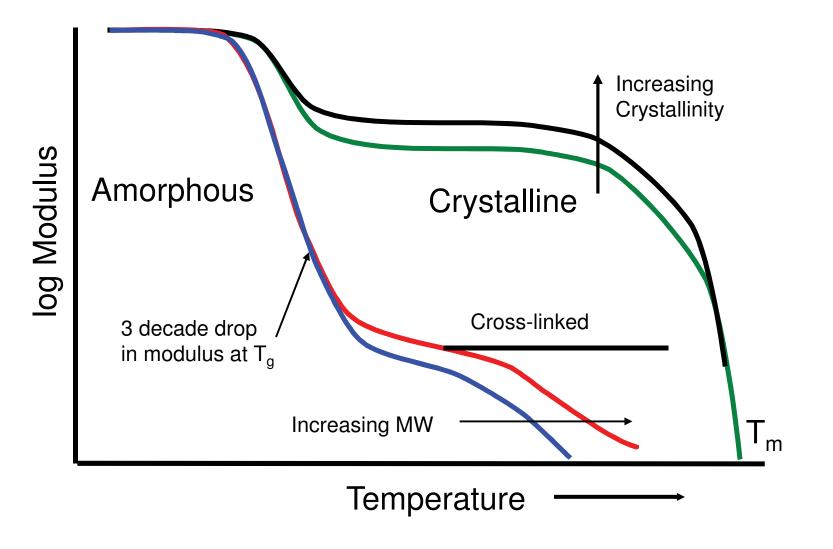
TAINSTRUMENTS.COM

<u>Glass Transition</u> - Cooperative motion among a large number of chain segments, including those from neighboring polymer chains


Secondary Transitions

- Local main-chain motion intramolecular rotational motion of main chain segments four to six atoms in length
- Side group motion with some cooperative motion from the main chain
- Internal motion within a side group without interference from side group
- Motion of or within a small molecule or diluent dissolved in the polymer (e.g. plasticizer)

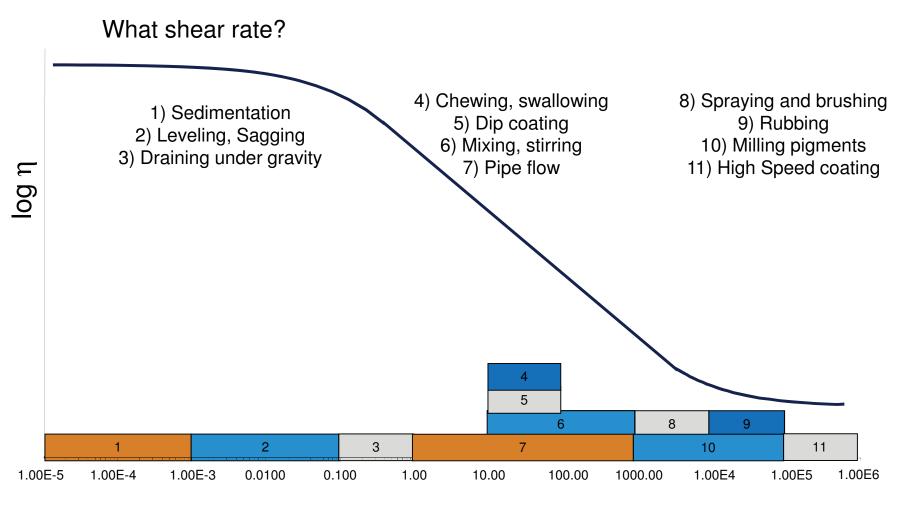
Reference: Turi, Edith, A, Thermal Characterization of Polymeric Materials, Second Edition, Volume I., Academic Press, Brooklyn, New York, P. 487.



Polycarbonate in Torsion

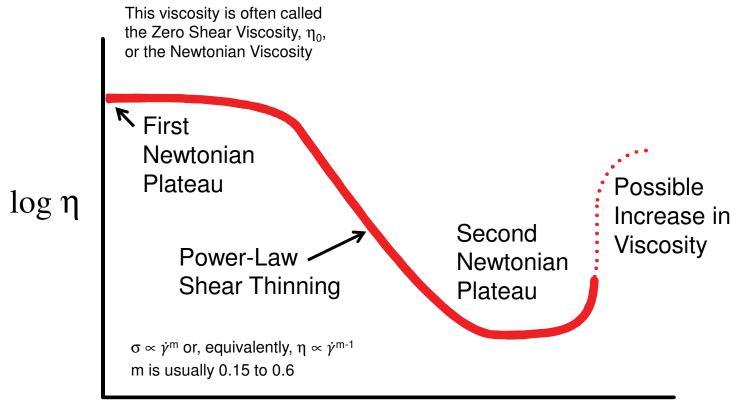
Crystallinity, Molecular Weight, and Crosslinking

Applications of Rheology Structured Fluids


Structured Fluids

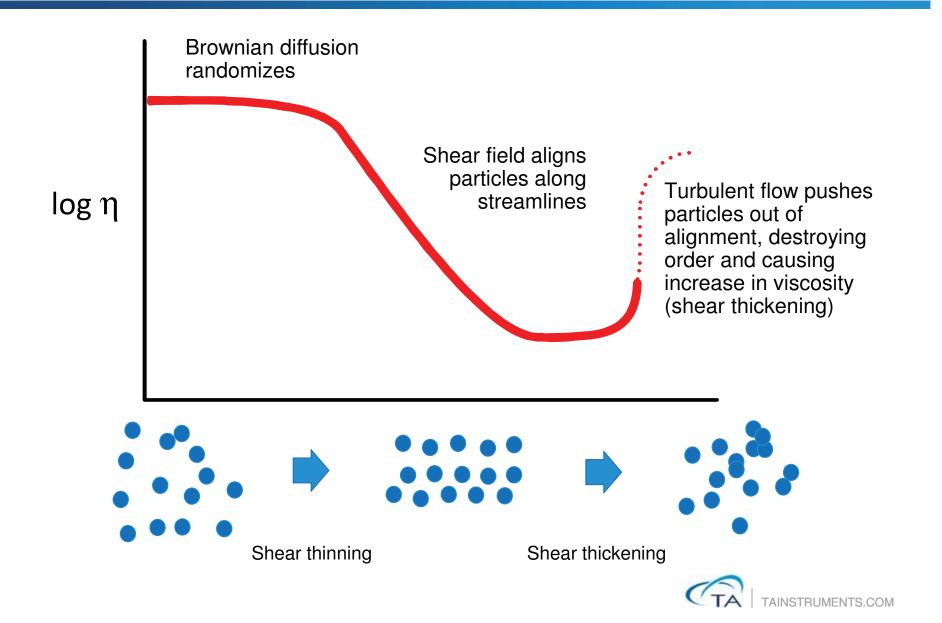
- Multiphase systems consisting of a dispersed phase (solid, fluid, gas) in surrounding fluid phase
- Examples are:
 - Paints
 - Coatings
 - Inks
 - Personal Care Products
 - Cosmetics
 - Foods

- Properties:
 - Yield Stress
 - Non-Newtonian Viscous Behavior
 - Thixotropy
 - Elasticity


Idealized Flow Curve

shear rate (1/s)

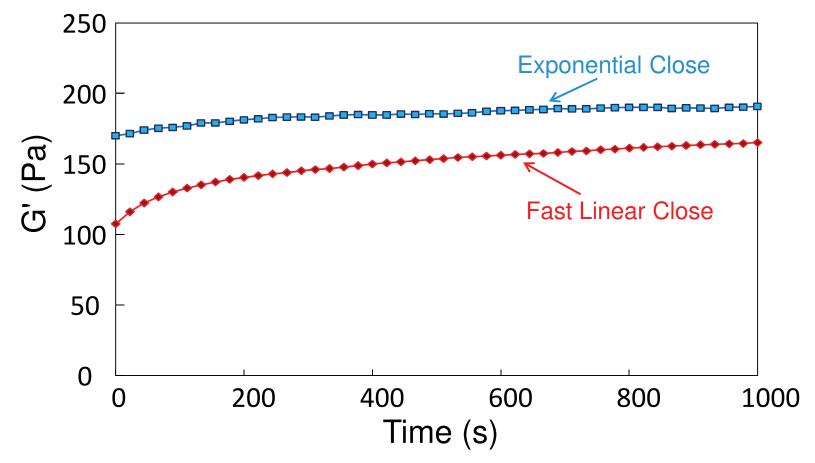
General Viscosity Curve for Suspensions



 $\log \dot{\gamma}$

Reference:Barnes, H.A., Hutton, J.F., and Walters, K., <u>An Introduction to Rheology</u>, Elsevier Science B.V., 1989. ISBN 0-444-87469-0

Reason for Shape of General Flow Curve


Closing the Gap

s Options					
pplication Discovery HR Information	Discovery HR Gap Options	Gap closure			
Gap Temperature Conditioning	 Standard Axial force Gap closure 	Closure profile Closure distance	linear 10000.0	▼] μm	
Flow Oscillation All steps Material properties Manual oscillation	Coarse velocity 10000.0 μr Other velocity 10000.0 μr	Velocity N/s n/s n/s	10000.0	μm/s	
	Experiment start Gap handling at start of test Flag mismatches Tolerance Duration Override wait for gap	petween geometry and instrument gap μm hh:mm:ss	▼ Cancel	-	

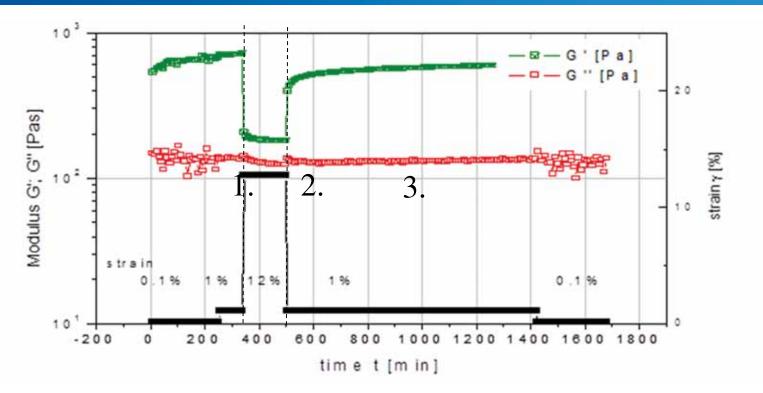
- Linear or Exponential speed profile after reaching 'Closure Distance'
- Normal Force set not to exceed a certain value after reaching the user defined 'Closure Distance'

Comparison of Linear and Exponential Closing

Lowering the gap can introduce shear, breaking down weakly structured samples Reducing the gap closure speed can minimize this effect

Using Pre-Shearing

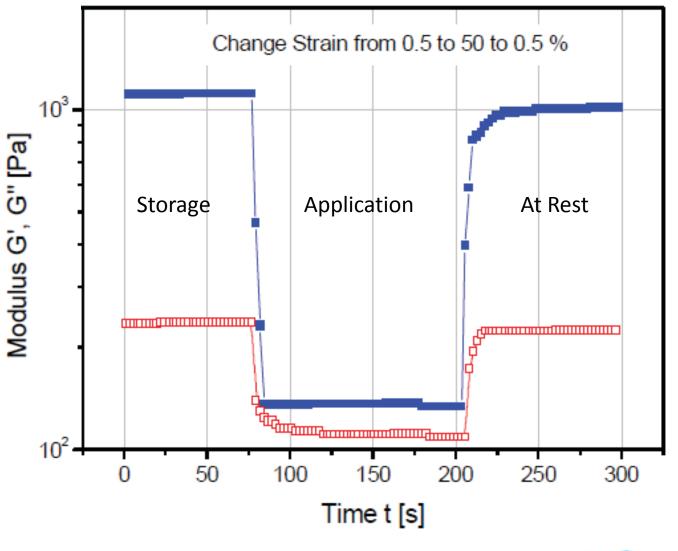
- Monitor the viscosity signal during the pre-shear to determine if the rate and duration are appropriate
 - If the viscosity is increasing during the pre-shear, the sample is rebuilding. The pre-shear should be higher than the shear introduced during loading to erase sample loading history
 - The viscosity should decrease and then level off
 - Typical Pre-Shear: 1- 100 sec⁻¹, 30-60 seconds
- Use an amplitude sweep to determine what strain to use for time sweep
 - A high strain will break down the sample, and not allow rebuilding
 - A low strain will give a weak signal
- Based on the Time Sweep, determine an appropriate equilibration time for that sample


Pre-shear Conditions

☆ Procedu	ure:			S
Name:				
 1 	: Conditioning Sample			
	Environmental Control — Temperature	25	°C	Inherit set point
	Soak time	10.0	s	Wait for temperature
	Wait for axial force			
	Preshear options			
	Shear rate	2.0	1/s	•
	Duration	10.0	s	
	 Advanced 			
	Equilibration Perform equilibration			

- 2: Oscillation Time 25°C, 60s, 2%, 10rad/s
- The goal for pre-shear is to remove the sample history at loading
- For high viscosity sample, use low rate (10 1/s) and long time (2 min.)
- For low viscosity sample, use high rate (100 1/s) and short time (1 min.)

Structured Fluid: Pre-testing



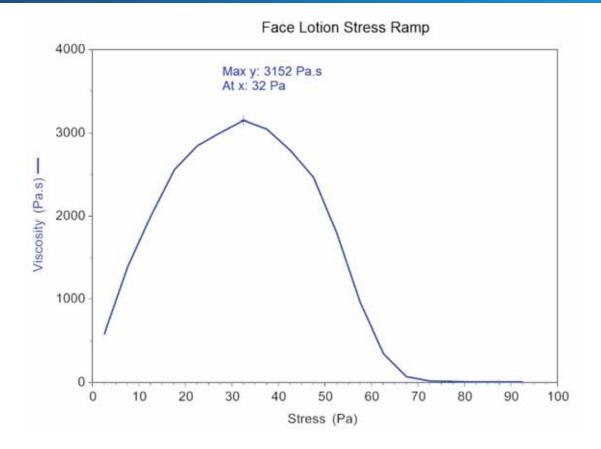
Three consecutive time sweeps:

- Time sweep within LVR (check if loading destroyed structure)
- Time sweep at large strain
- Time sweep back to LVR (check structure rebuild)

Time Sweeps- Hand Cream

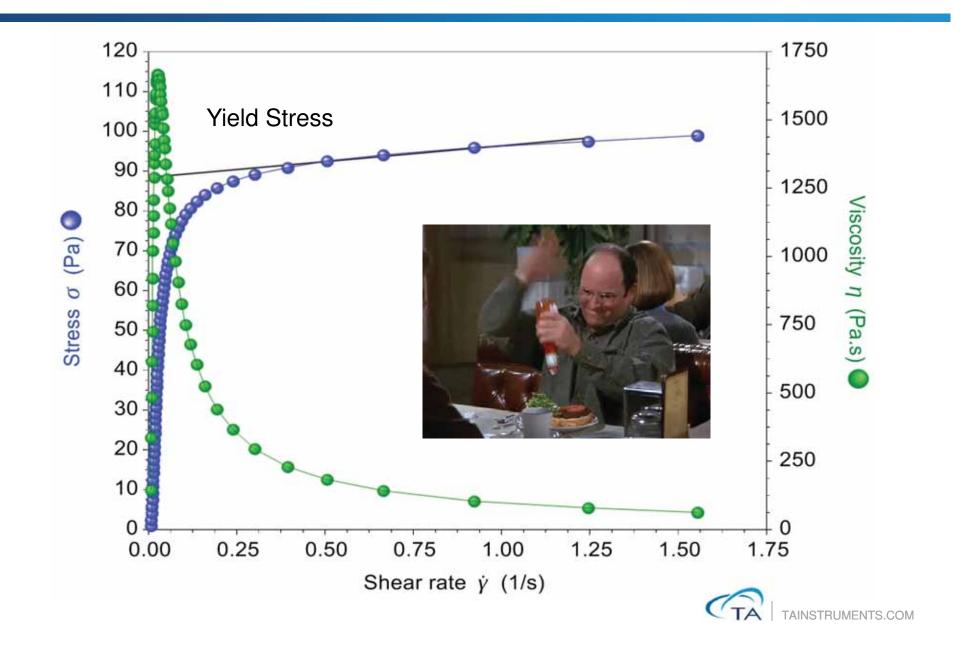
Yield Stress

 Structured fluids exhibit yield-like behavior, changing from 'solid-like' to readily flowing fluid when a critical stress is exceeded. Rheological modifiers are often used to control the yield behavior of fluids.

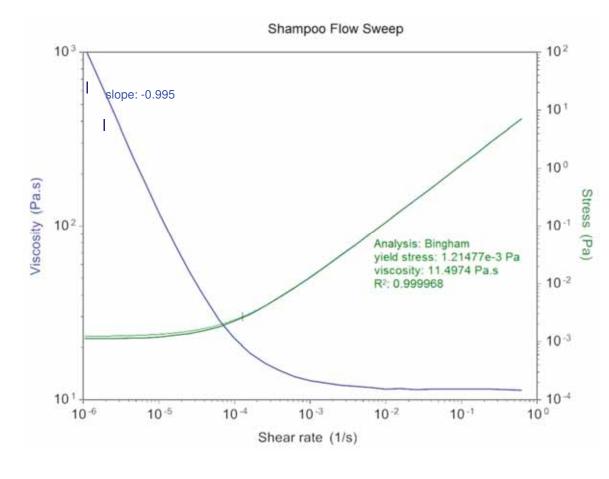

 There are multiple methods to measure Yield stress. The apparent yield stress measured is not a single value, as it will vary depending on experimental conditions.

Why modify the yield behavior?

- to avoid sedimentation and increase the shelf live
- to reduce flow under gravity
- to stabilize a fluid against vibration

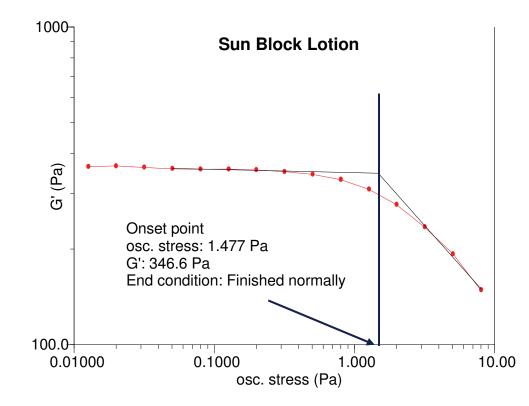

Yield Stress in a Flow Stress Ramp

- Stress is ramped <u>linearly</u> from 0 to a value above Yield Stress and the stress at viscosity maximum can be recorded as Yield Stress
- The measured yield value will depend on the rate at which the stress is increased. The faster the rate of stress increase, the higher the measured yield value



Yield Stress in a Flow Stress Ramp

Yield Stress: Flow Sweep Down - Rate Control


When the Yield Stress is small, a flow rate sweep from high to low shear rate is preferred

- Eliminates start-up effects for more accurate measurements
- Initial high shear rate acts as a pre-shear, erasing loading effects
- Steady State sensing allows the sample time to rebuild
- The plateau in shear stress is a measure of the yield stress.
- At the plateau, Viscosity vs.
 Shear Rate will have a slope of -1

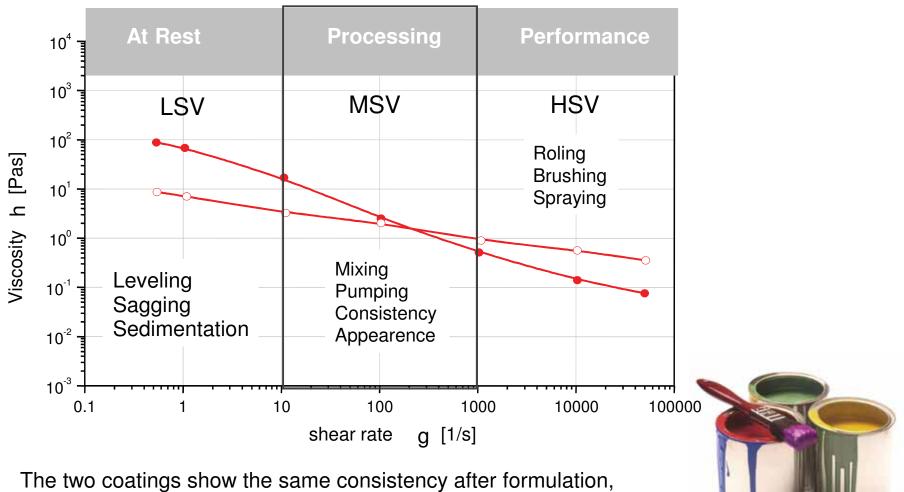
Yield: Stress/Strain Sweep Method

- Perform strain or stress sweep in oscillation
- Yield stress is the on set of G' curve. It is the critical stress at which irreversible plastic deformation occurs.

Yield stress of a sun block lotion

Viscosity Ranges of Paints/Coatings

- Low shear viscosity 10⁻³ to 1 s⁻¹
 - Ieveling, sagging, sedimentation


Medium shear viscosity10-10³ s⁻¹
 mixing, pumping and pouring

High shear viscosity 10³ - 10⁶ s⁻¹

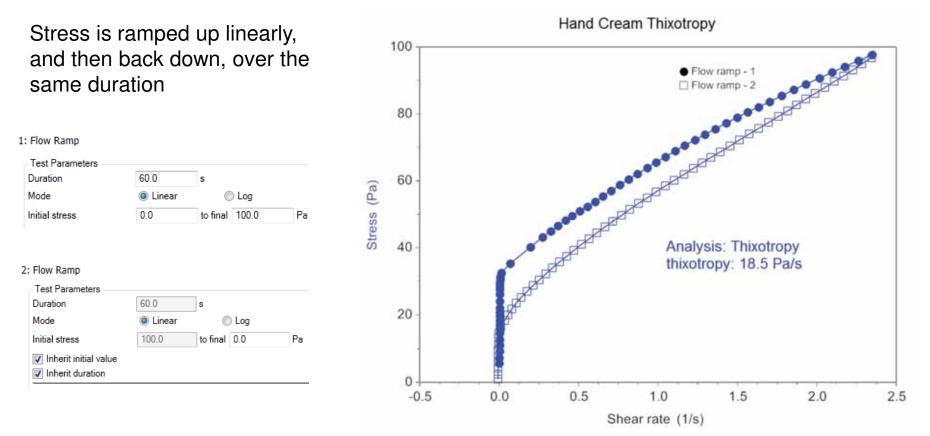
brushing, rolling spraying

Viscosity Ranges of Paints/Coatings

but they exhibit very different application performance

A TAINSTRUMENTS.COM

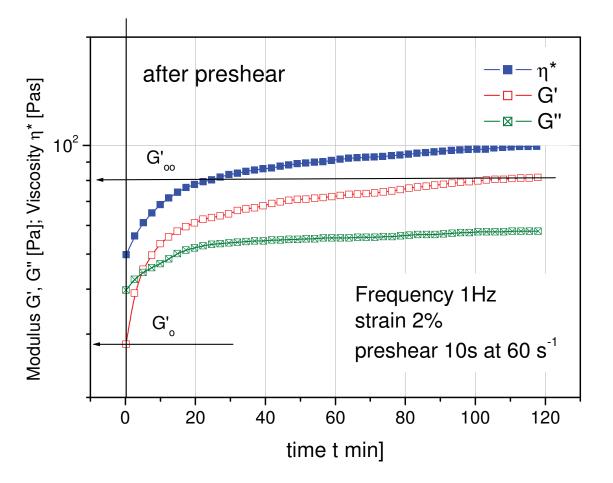
Thixotropy


The thixotropy characterizes the time dependence of reversible structure changes in complex fluids. The control of thixotropy is important to control:

- process conditions for example to avoid structure build up in pipes at low pumping rates i.e. rest periods, etc....
- sagging and leveling and the related gloss of paints and coatings, etc..

Thixotropic Loop Test

In a thixotropic material, there will be a hysterisis between the two curves


The further the up ramp and down ramp curves differ, the larger the area between the curves, the higher the thixotropy of the material. See also AAN 016 – Structured Fluids

Structure Recovery

Structure build up

Pre-shear the sample to break down structure. Then monitor the increase of the modulus or complex viscosity as function of time.



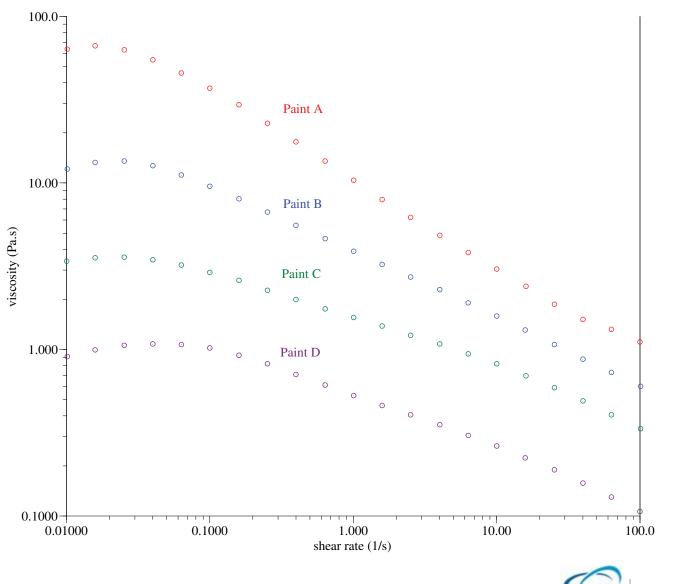
 $G'(t) = G'_{o} + (G'_{\infty} - G'_{o})(1 - e^{t/\tau})$

 τ = characteristic recovery time

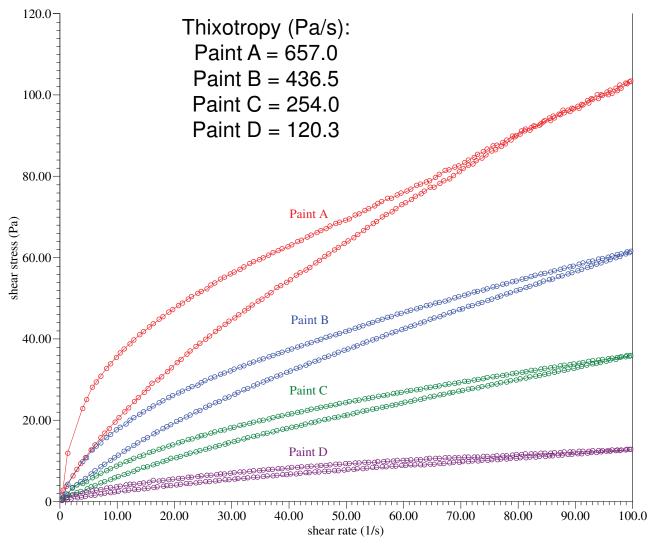
Time Sweep after Pre-Shearing

Thixotropic Index & Recovery Time

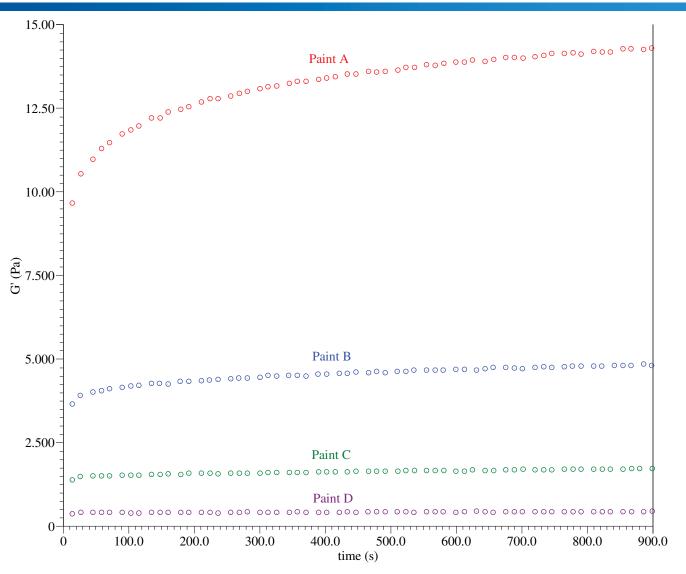
The non-sagging formula (with additive) has both a shorter recovery time and a higher final recovered viscosity (or storage modulus), and the recovery parameter takes both of these into account to predict significantly better sag resistance.


The ratio η(∞) /t, is the recovery parameter (a true thixotropic index), and has been found to correlate well to thixotropy-related properties such as sag resistance and air entrainment.

Composition	τ (s)	$\stackrel{\eta(\infty)}{(P)}$	$\begin{array}{l} \eta(\infty)/\tau \\ (Ps^{-1}) \end{array}$	Thix index	Sag?
With additive	8.9	226	13	4.04	no
Without additive	18.2	97.3	5.4	5.24	yes


Rheology in coatings, principles and methods

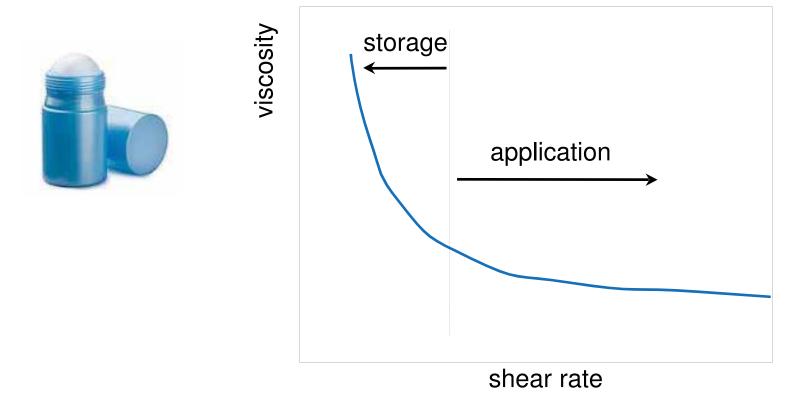
RR Eley - Encyclopedia of Analytical Chemistry, 2000 - Wiley Online Library



Paint A

Paint B

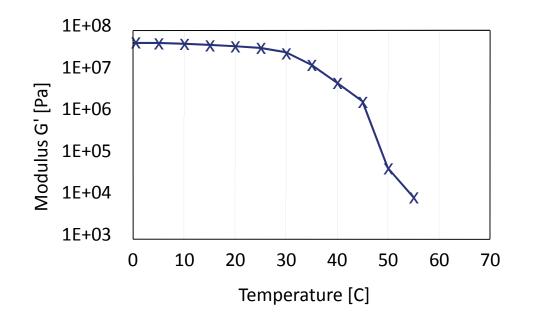
Paint C



Antiperspirant/Deodorant

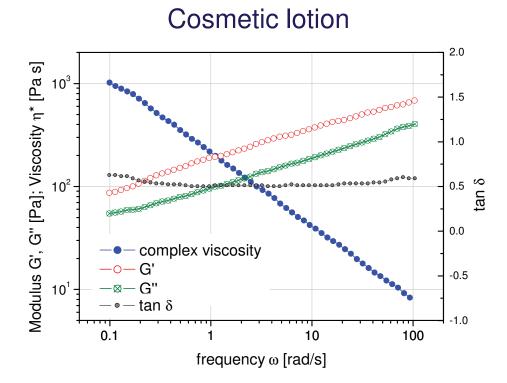
Roll-ons: Rheology and end-use performance

The viscosity has to be balanced to provide the correct viscosity at a given shear rate



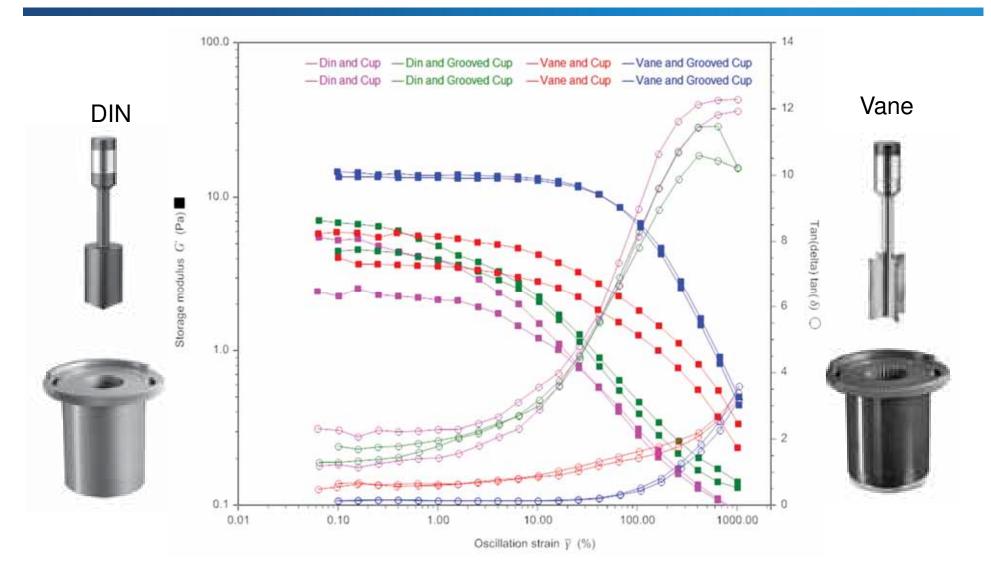
Antiperspirant/Deodorant

Sticks: Rheology and process performance


- use <u>small particles</u> to reduce sedimentation speed
- add <u>rheological modifier</u> like clay to stabilize the suspension and keep the particles in suspension

The temperature dependence of the modulus governs the behavior during the application to the skin

Elasticity: Oscillation Frequency Sweep


 Many dispersion exhibit solid like behavior at rest

 The frequency dependence and the absolute value of tan δ correlate with long time stability

Note: strain amplitude has to be in the linear region

Foam Handwash Strain Sweep: Din vs Vane Rotor

TRIOS Help Menu

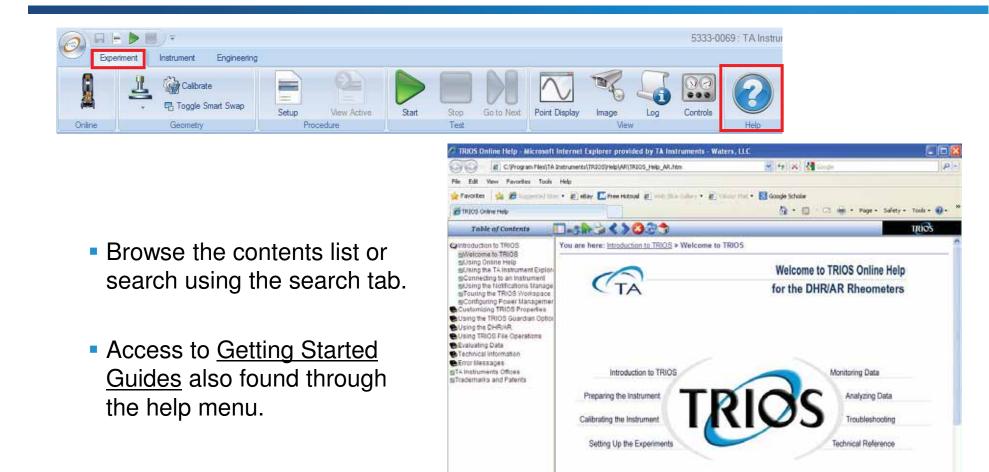
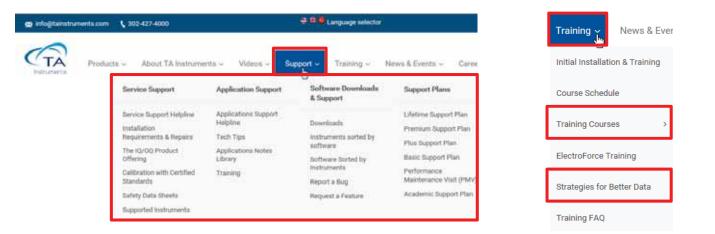


Table of Contents

Sosearch Mookmarks Click here to view a PDF of What's New In TRIO'S Software

TRIOS is TA Instruments' state-of-the-art software package used to control instruments and analyze data.



1/4 × 100% +

My Computer

Instructional Videos

From <u>www.tainstruments.com</u> click on Videos, Support or Training

Select Videos for TA Tech Tips, Webinars and Quick Start Courses

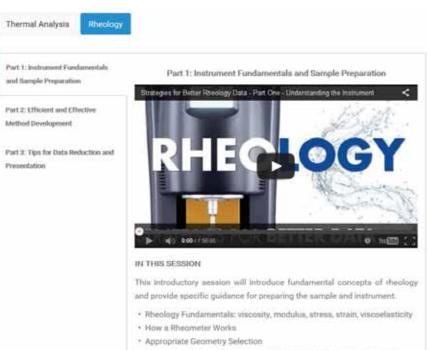
See also: <u>https://www.youtube.com/user/TATechTips</u>

Instructional Video Resources

Quickstart e-Training Courses

Web based e-Training Courses

TA Instruments offers a variety of training opportunities via the Internet. e-Training opportunities include the following:


QUICKSTART e-TRAINING COURSES

QuickStart e-Training courses are designed to teach a new user how to set up and run samples on their analyzers. These 60-90 minute courses are available whenever you are. These pre-recorded courses are available to anyone at no charge. Typically these courses should be attended shortly after installation.

Contact Us for Web based e-Training Courses

Training ~	g 🗸 News & Events 🗸 Careers 🗸			
Initial Installatio	n & Training			
Course Schedul	e	Home Trainir		
Training Course	s >	Theory & Applications		
ElectroForce Tra	aining	Courses		
Strategies for Better Data		Hands-On Training Courses		
Training FAQ		Custom Onsite Training Courses		
		Web based e-Training Coullines		

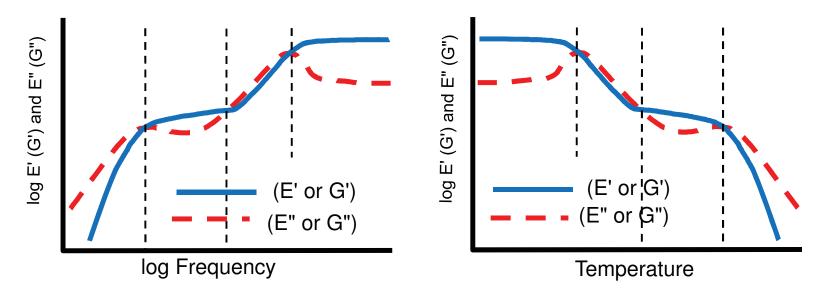
Strategies for Better Data - Rheology

· Understanding Your Material and Preparing a Representative Sample

Need Assistance?

- Check the online manuals and error help.
- Contact the TA Instruments Hotline
 - Phone: 302-427-4070 M-F 8-4:30 EST
 - Select <u>Thermal</u>, <u>Rheology</u> or <u>Microcalorimetry</u> Support
 - Email: thermalsupport@tainstruments.com or rheologysupport@tainstruments.com or microcalorimetersupport@tainstruments.com
- Call your local Technical or Service Representative
- Call TA Instruments
 - Phone: 302-427-4000 M-F 8-4:30 EST
- Check out our Website: <u>www.tainstruments.com</u>
- For instructional videos go to: <u>www.youtube.com/user/TATechTips</u>

Thank You


The World Leader in Thermal Analysis, Rheology, and Microcalorimetry

Appendix 1: Time Temperature Superposition (TTS)

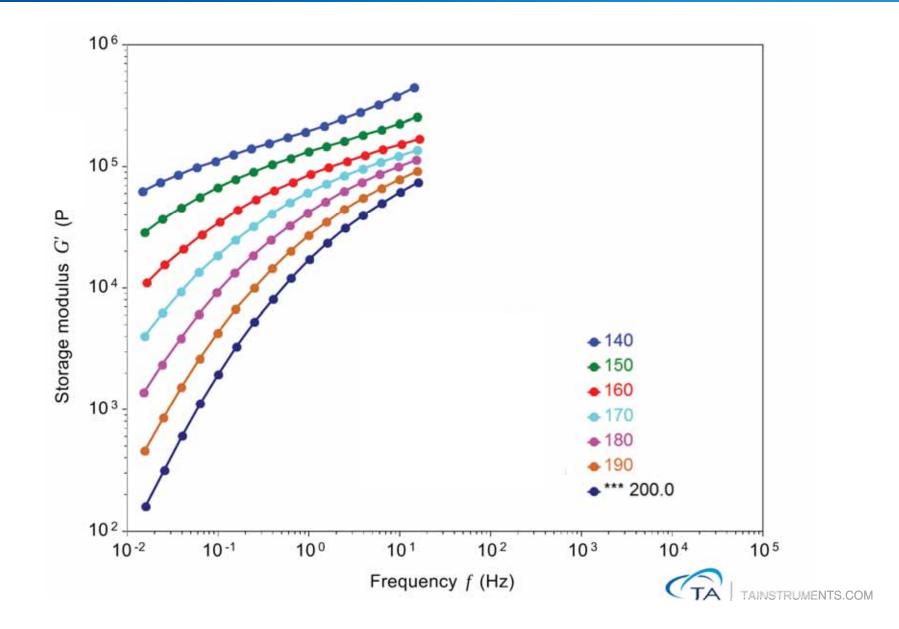
Time and Temperature Relationship

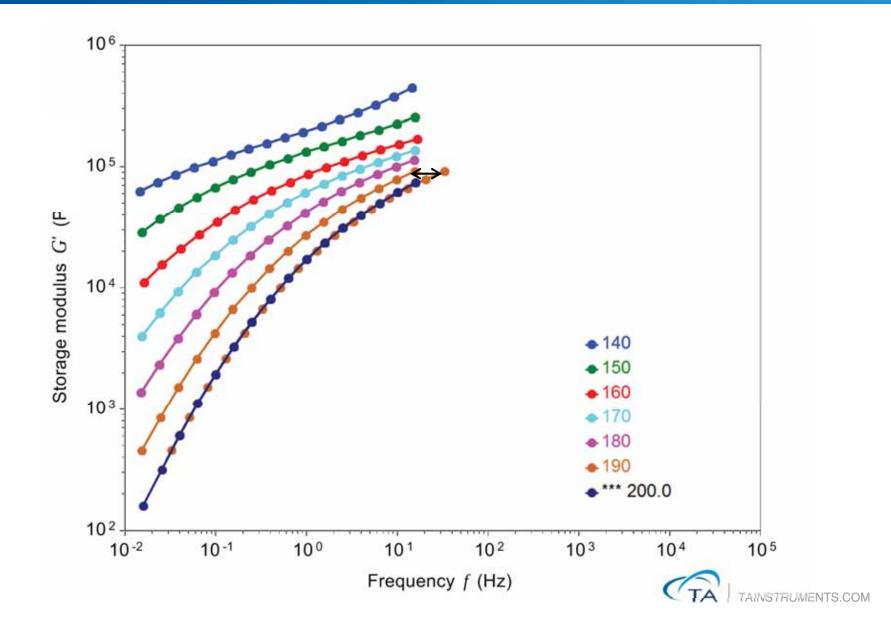
- Linear viscoelastic properties are both time-dependent and temperature-dependent
- Some materials show a time dependence that is proportional to the temperature dependence
 - Decreasing temperature has the same effect on viscoelastic properties as increasing the frequency
- For such materials, changes in temperature can be used to "re-scale" time, and predict behavior over time scales not easily measured

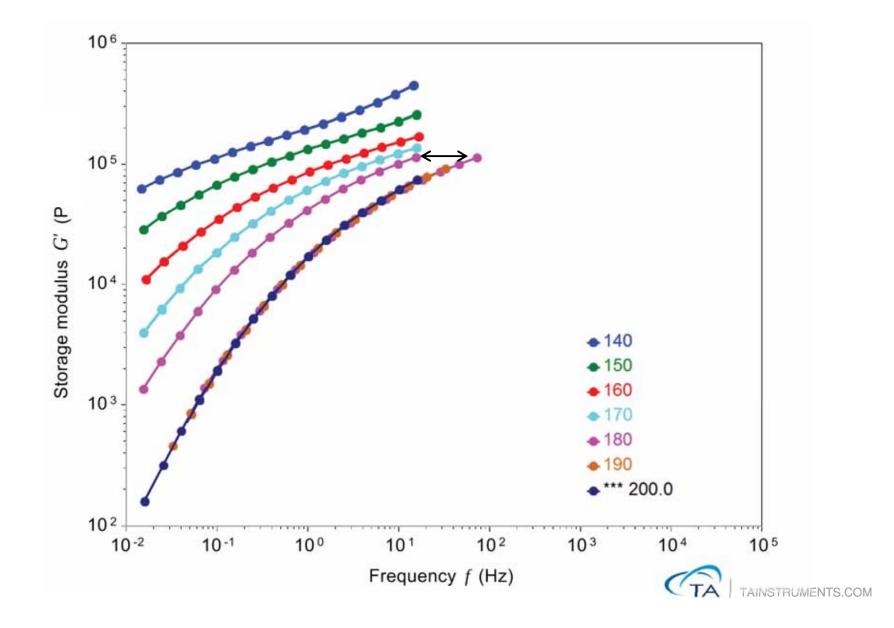
Time Temperature Superpositioning Benefits

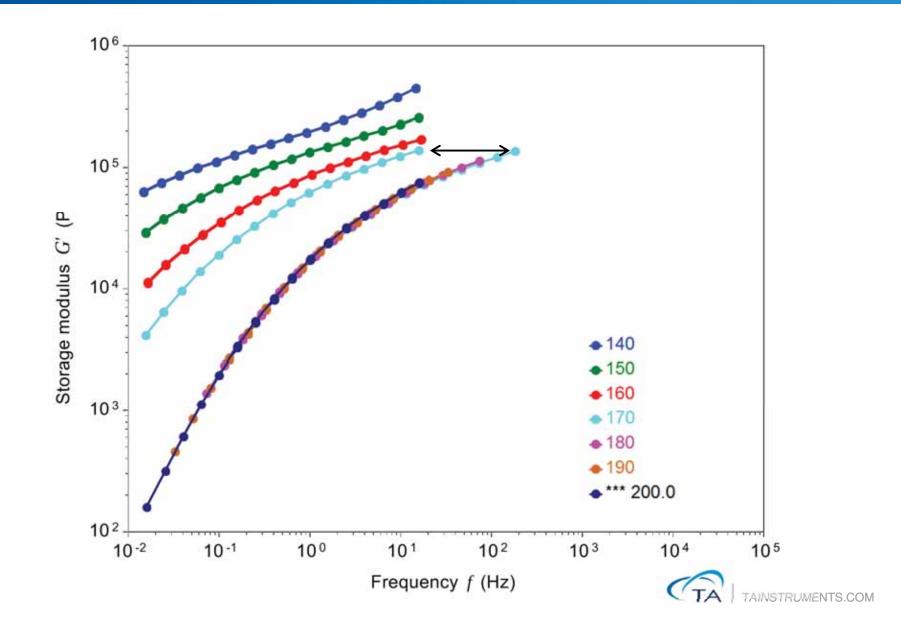
- TTS can be used to extend the frequency beyond the instrument's range
- Creep TTS or Stress Relaxation TTS can predict behavior over longer times than can be practically measured
- Can be applied to amorphous, non modified polymers
- Material must be thermo-rheological simple
 - One in which all relaxations times shift with the same shift factor $a_{\rm T}$

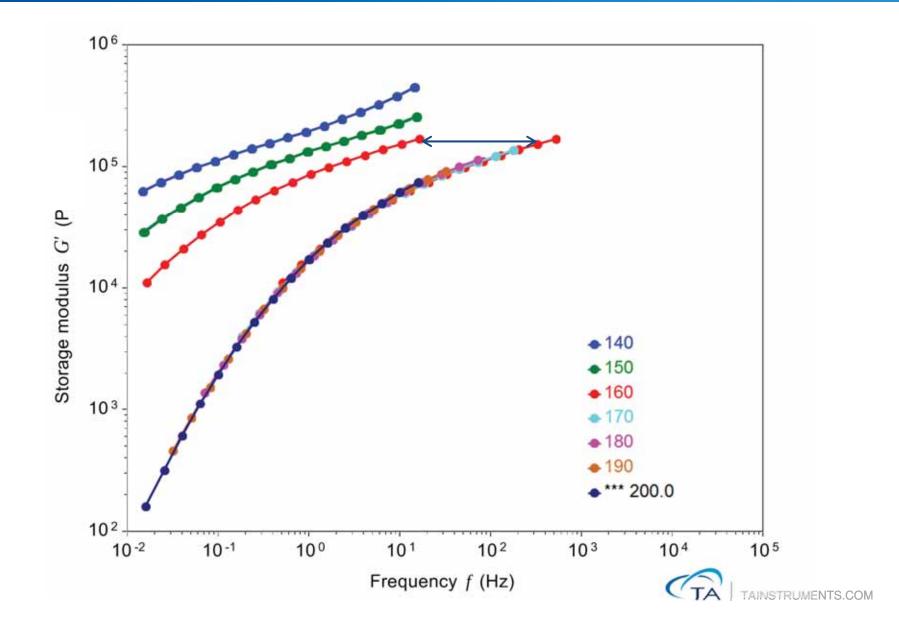
When Not to Use TTS

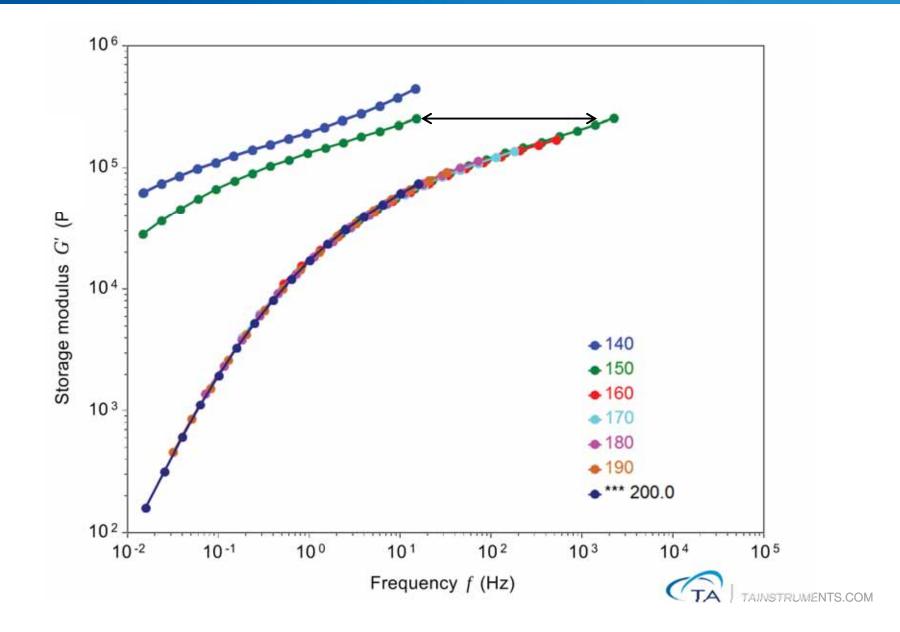

- If crystallinity is present, especially if any melting occurs in the temperature range of interest
- The structure changes with temperature
 - Cross linking, decomposition, etc.
 - Material is a block copolymer (TTS may work within a limited temperature range)
 - Material is a composite of different polymers
 - Viscoelastic mechanisms other than configuration changes of the polymer backbone
 - e.g. side-group motions, especially near the Tg
 - Dilute polymer solutions
 - Dispersions (wide frequency range)
 - Sol-gel transition

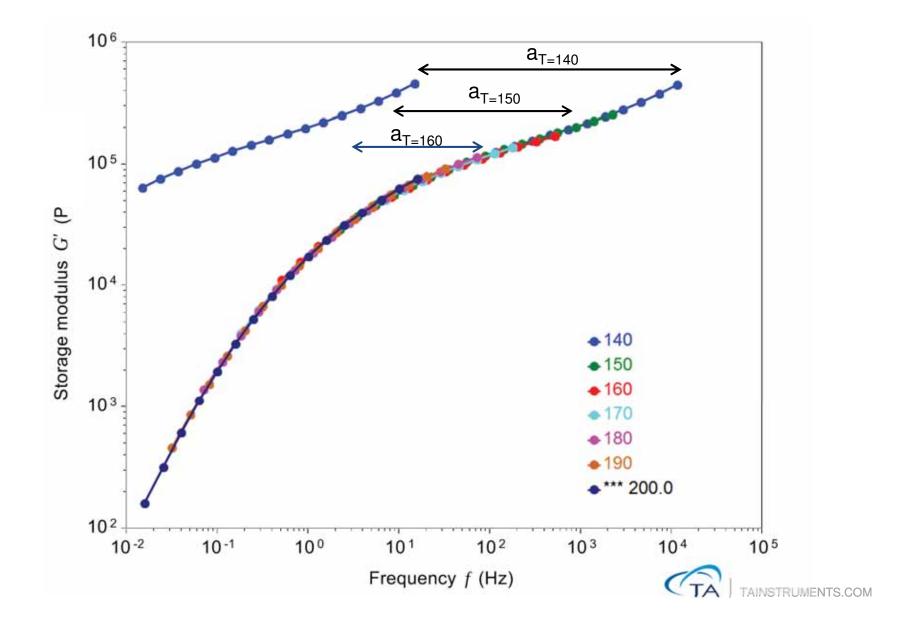


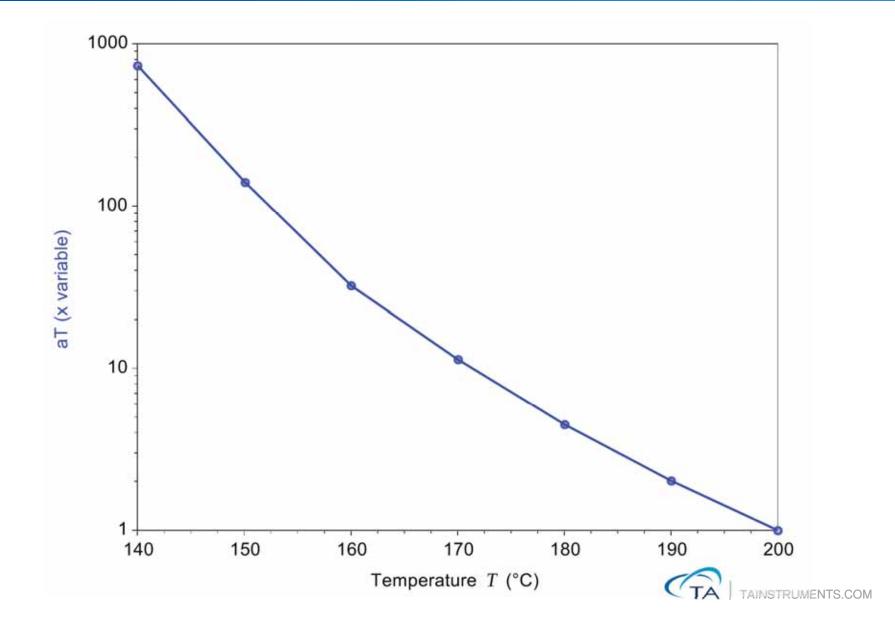

Guidelines for TTS


- Decide first on the Reference Temperature: T₀. What is the use temperature?
- If you want to obtain information at higher frequencies or shorter times, you will need to conduct frequency (stress relaxation or creep) scans at temperatures lower than T₀.
- If you want to obtain information at lower frequencies or longer times, you will need to test at temperatures higher than T₀.
- Good idea to scan material over temperature range at single frequency to get an idea of modulus-temperature and transition behavior.









Shift Factors a_T vs Temperature

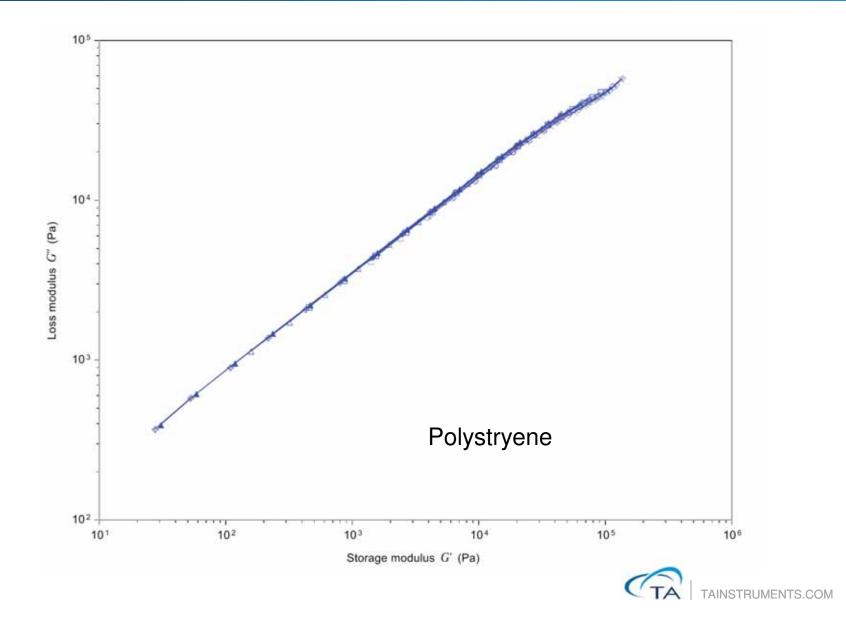
Shift Factors: WLF Equation

 Master Curves can be generated using shift factors derived from the Williams, Landel, Ferry (WLF) equation

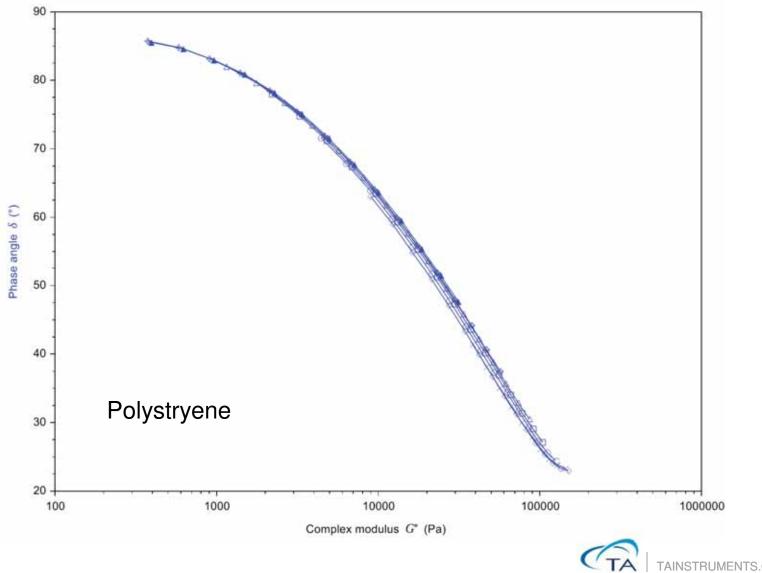
 $\log a_{T} = -c_{1}(T-T_{0})/c_{2} + (T-T_{0})$

- a_T = temperature shift factor
- T_0 = reference temperature
- c_1 and c_2 = constants from curve fitting
 - Generally, $c_1 = 17.44 \& c_2 = 51.6$ when $T_0 = T_g$

When not to use the WLF Equation


- Sometimes you shouldn't use the WLF equation (even if it appears to work)
- If T > T_g+100 ℃
- If $T < T_g^{o}$ and polymer is not elastomeric
- If temperature range is small, then c₁ & c₂ cannot be calculated precisely
- In these cases, the Arrhenius form is usually better $(F_{1})(1/T_{1})(1/T_{1})$

 $\ln a_{T} = (E_{a}/R)(1/T-1/T_{0})$


- a_T = temperature shift factor
- $E_a = Apparent activation energy$
- T_0 = reference temperature
- T = absolute temperature
- R = gas constant
- $E_a = activation energy$

Verify Data for TTS

Verify Data for TTS


TAINSTRUMENTS.COM

References for TTS

- 1) Ward, I.M. and Hadley, D.W., "*Mechanical Properties of Solid Polymers*", Wiley, 1993, Chapter 6.
- 2) Ferry, J.D., "Viscoelastic Properties of Polymers", Wiley, 1970, Chapter 11.
- 3) Plazek, D.J., "*Oh, Thermorheological Simplicity, wherefore art thou?*" Journal of Rheology, vol 40, 1996, p987.
- 4) Lesueur, D., Gerard, J-F., Claudy, P., Letoffe, J-M. and Planche, D., "*A structure related model to describe asphalt linear viscoelasticity*", Journal of Rheology, vol 40, 1996, p813.

Appendix 2: Software Screen Shots TRIOS

DHR Peak Hold: Constant Shear Rate vs. Time

Sample: PDMS			
Seometry: 40mm parallel p	late, Peltier plat	e Steel	
☆ Procedure of 1 step			S 🖯 🖊
▲ 1: Flow Peak Hold			
Environmental Cont	rol		
Temperature	25	°C	Inherit set point
Soak time	0	s	☐ Wait for temperature
– Test Parameters –			
Duration	300.0	s	
Shear Rate	50.0	1/s	•
, Inherit initial value	•		
✓ Controlled Rate /	Advanced		
✓ Data acquisition			

ARES-G2: Stress Growth Test (Step Rate)

) Step : Step (Transient) 🗸 Stress Growt	h 🗠	3 • • • • •) ((Step : Step (Transient) 😴 Stress Gro	wth 🛩	0 4 💀
Environmental Control Temperature 25 °C Soak time 0 s	☐ Inherit value ☐ Wait for temperature		Environmental Control – Temperature Soak time		°C Inherit value s Wait for temperature	
Test Parameters Duration 60.0 s Shear rate 10.0			Test Parameters Duration Shear rate	60.0 s	s 1/s	
Sampling Linear Number of points 200 Steady state sensing	⊚ Log		Sampling Number of points	OLinear 200	Cog	
Data acquisition			 Data acquisition 			
Data acquisition Advanced	m		Data acquisition Advanced Step : Step (Transie	nt) 🗸 Stress G	irowth 🗸	8 4 3
Data acquisition	Inherit value		Advanced		irowth <mark>↓</mark> °C ☐Inherit value]s ☐Wait for temperatur	e e
Data acquisition Advanced tep : Step (Transient) Stress Growth Environmental Control remperature 25 *C	Inherit value		Advanced Step : Step (Transie Environmental Control Temperature	25]°C []Inherit value	

Continuous Ramp

[Experiment 1]	_
× Sample: PDMS	
Geometry: 40mm parallel plate, Peltier plate Steel	
* Procedure of 1 step 😜 🚽 💒 💋	
 1: Flow Ramp Environmental Control Temperature 25 °C Inherit set point Soak time s Wait for temperature Test Parameters Duration 180.0 s Wait for temperature Test Parameters Duration 180.0 s Mode Linear Log Inherit initial value Inherit duration Sampling interval 1.0 s/pt Controlled Rate Advanced Data acquisition Step termination 	Control variables: Shear rate Velocity Torque Shear stress

Thixotropic loop be done by adding another ramp step

Thixotropic loop

Experiment 1	[Experiment 1]	
* Sample: PDMS	× Sample: PDMS	
Geometry: 40mm parallel plate, Peltier plate Steel	× Geometry: 40mm parallel plate, Peltier plate Steel	
* Procedure of 2 steps 🐉 🚽	* Procedure of 2 steps 🔛 🗧	11. 21
 1: Flow Ramp Environmental Control Temperature 25 °C Inherit set point Soak time 0 s Wait for temperature Test Parameters Duration 180.0 s Mode C Linear C Log Initial shear rate 0 to final 100.0 1/s v Inherit initial value Inherit duration Sampling interval 1.0 s/pt v Controlled Rate Advanced Data acquisition Step termination 2: Flow Ramp 25°C, 180s, 100 to final 0 1/s 	 1: Flow Ramp 25°C, 180s, 0 to final 100 1/s 2: Flow Ramp Environmental Control Temperature 25 °C Inherit set point Soak time 0 s Wait for temperature Test Parameters Duration 180.0 s Mode Linear Log Inherit initial shear rate 100.0 to final 1/s • Inherit duration Sampling interval 1.0 s/pt • Controlled Rate Advanced Data acquisition Step termination 	

ARES G2: Stress Ramp: Stress Control Pre-test

Step : Conditioning 🗸	Stress Co	ontrol		
Load Precomputed Environmental Control	Run	and Calcul	ate	
Temperature	25	°C	🔲 Inherit value	
Soak time	0	s	Wait for temperature	
Test Parameters	11			
Strain %	1.0	%		~
Save stress control PID	file			
Stress control PID file path	:			

ARES G2: Stress Ramp (Thixotropic Loop)

Step : Flow Ra	amp 🐱	_	_	_		
Temperature	25	°C	Inheri	it value		
Soak time	0	s	Wait	for tempera	iture	
Test Parameters — Duration Mode	120.0 Cinear	s)Log			
Initial Stress	0	to final	100.0	Pa	~	
inherit rate/stress	1.57		6T	27.3k		
Number of points	200	~				

Environmental Contr	ol			. 1	
Temperature	25	°C	🔄 Inherit valu	e	
Soak time	0	s	Wait for ter	nperature	
Test Parameters —					
Duration	120.0	s			
Mode	💿 Linear	(Log		
Initial Stress	100.0	to fina	I O F	a 🗸	
✓ inherit rate/stress	14	The second se	- 10		
Number of points	200	~			
 Data acquisition 					

DHR and ARES G2: Steady State Flow

Environmental Control Temperature Soak time	25 0	°C s	☐ Inherit set point ☐ Wait for temperature		Control variables
Test Parameters Logarithmic sweep					 Shear rate Velocity
Shear rate Points per decade	0.1	to 10	00.0 1/s		VelocityTorqueShear stress
Steady state sensir Max. equilibration time Sample period	e 60.0 30.0	s 5		- Stea	ady state algorithr
% tolerance Consecutive within	5.0 3				

DHR and ARES G2: Flow Temp Ramp

[Experiment 1]			
Sample: PDMS			
Seometry: 40mm parallel plate, Peltie	er plate Steel		
* Procedure of 1 step		S 🗟 🖉	
 1: Flow Temperature Ramp 			To minimize thermal
Environmental Control			lag, the ramp rate
Start temperature	20 °C	Use entered value 💌	
Soak time	300.0 s	Wait for tamperature	should be slow.
Ramp rate	2.0 °C/min		1-5℃/min.
End temperature	100 °C		
Soak time after ramp) s		
Estimated time to complete 4	0:00 hh:mm:ss		
Test Parameters			Control variables:
Shear Rate 10.	0 1/s 🔶		 Shear rate Valacity
Sampling interval 10.	0 s/pt 💌		VelocityTorque
✓ Controlled Rate Advanced			Shear stress
 Data acquisition 			
 Step termination 			

DHR: Strain/Stress Sweeps

[Experiment 1] * Sample: PDMS	
Geometry: 40mm parallel plate, Peltier plate Steel	$ \rightarrow $
* Procedure of 1 step	- 11 x
 1: Oscillation Amplitude Environmental Control Temperature 25 °C Inherit set point Soak time 0 s Wait for temperature Test Parameters Angular frequency 6.28 rad/s Icogarithmic sweep Strain % 0.02 to 20.0 % Points per decade Strain % 0.02 to 20.0 % Points per decade Controlled Strain Advanced Controlled strain type Controlled strain type Continuous oscillation [direct strain] Motor mode Auto Data acquisition Step termination 	Control variables: Osc torque Osc stress Displacement % strain Strain

ARES G2: Strain Sweep

Step : Oscillation 🐱	Amplitude 🗸			3 😭 👌 🐸 🤅
Environmental Control				/
Temperature	25	°C	Inherit value	
Soak time	0	s	Wait for temperature	
Test Parameters				
Angular frequency	6.283	rad/s	~	
Logarithmic sweep			~	
Strain %	0.01	to 10	00.0 % 🗸	
Points per decade	5			
 Data acquisition 				
Acquisition Mode:	Corr	elation	Transient	
Delay cycles	0.5	Ū,		
Delay time	1.0	s		
Frequency based	correlation			
Save waveform (p	oint dienlaw)			

DHR: Time Sweep

Sample	le: PDMS				
¥ Geom	etry: 40mm parallel plat	e, Peltier pla	te Steel		
* Proce	dure of 2 steps				й 🔒
~	1: Conditioning Sample	25°C 🔶			
^	2: Oscillation Time				
	Environmental Control				1
	Temperature	25	°C	🔲 Inherit set point	
	Soak time	0	s	Wait for temperature	
	- Test Parameters				
	Duration	300.0	s		
	Maximize number of po	pints		•	
	Strain %	0.1	%		
		,			
	Single point			•	
	Angular frequency	6.28	rad/s ·	•	

Pre-shear can be setup by adding a "conditioning" step before the time sweep.

- Step termination

The strain needs to be in the LVR

ARES G2: Time Sweep

) Step : Conditioning 🗸 Sample 🗸 🙆 😭	
Environmental Control Temperature 50 Soak time 0 s Wait for temperature	Pre-shear step
Preshear options Perform preshear Shear rate Duration 60.0 s	
Equilibration Equilibration Equilibration time	Step : Oscillation 🔽 Time 💌
	Environmental Control Temperature 50.000 °C Inherit value Soak time 0 hh:mm:ss Wait for temperature
Structure Recovery	Test Parameters Duration 30:00 Sampling interval 10.0
	Strain % 0.2 %

Fast Data Sampling Option in Time Sweep

 Environmental Conti Isothermal 				Environmental Cont Isothermal © F			
Temperature	25	°C	Inherit set point	Temperature	25	°C	Inherit set point
Soak time	0	s	Wait for temperature	Soak time	0	s	Wait for temperature
Test Parameters —				Test Parameters			
Duration	60.0	s			60.0	_	
Strain %	2.0	%	-	Duration Stress	1.0	s Pa	

Strain control mode

- Stress control mode
- Fast data acquisition is used for monitoring fast changing reactions such as UV initiated curing
- The sampling rate for this mode is twice the functional oscillation frequency up to 25Hz.
- The fastest sampling rate is 50 points /sec.

Frequency Sweep

1: Oscillation Frequency Environmental Control - Temperature Soak time Test Parameters Strain %	25 0 2.0	°C s	☐ Inherit set point ☐ Wait for temperature	Co	Ontrol variables: Osc torque Osc stress Displacement % strain Strain
Logarithmic sweep			•		
Angular frequency Points per decade	100.0 5	to 0	.1 rad/s 💌		

- Common frequency range: 0.1 100 rad/s.
- Low frequency takes long time
- As long as in the LVR, the test frequency can be set either from high to low, or low to high
- The benefit doing the test from high to low
 - Being able to see the initial data points earlier

ARES G2: Frequency Sweep (Strain Control)

Step : Oscillation 🛩	Frequency ~				0 2 3 9
Environmental Control					
Temperature	25	°C	Inherit val	ue	
Soak time	0	S	Wait for te	mperature	
Strain % Logarithmic sweep	0.2	%		×	
Angular frequency	100.0	to 0.1	i rad	Vs 🐱	
Points per decade	5]			

DHR: Temperature Sweep

Experiment 1]	
Sample: PDMS	
Seometry: 40mm parallel plate, Peltier plate Steel	
* Procedure of 2 steps	8 #*
 1: Conditioning Options 2: Oscillation Temperature Sweep Environmental Control Start temperature -100 °C Use entered value 	Control voriables
Soak time 300.0 s Wait for temperature End temperature 100 °C Temperature step 5 °C • Soak time after ramp 0 s • Test Parameters • • •	 Control variables: Osc torque Osc stress Displacement
Strain % 0.1 % Single point Angular frequency 6.28 rad/s	% strainStrain
 Controlled Strain Advanced Data acquisition Step termination 	

• The strain needs to be in the LVR

DHR: Temperature Ramp

Experiment 1]	
Sample: PDMS	
Seometry: 40mm parallel plate, Peltier plate Steel	
* Procedure of 2 steps	T 18 11
 1: Conditioning Options 2: Oscillation Temperature Ramp Environmental Control Start temperature -100 °C Use entered value Soak time 300.0 s Wait for temperature Ramp rate 2.0 °C/min End temperature 100 °C Soak time after ramp 0 s Estimated time to complete 01:40:00 hh:mm:ss 	To minimize thermal lag, recommend using slow ramp rate e.g. 1-5°C/min.
Test Parameters Maximize number of points Strain % 0.1 Single point Angular frequency 6.28 rad/s Controlled Strain Advanced Data acquisition Step termination	 Control variables: Osc torque Osc stress Displacement % strain Strain

 The strain needs to be in the LVR

DHR: Axial Force Control

1: Conditioning Options			
Axial force adjustment	12	-	
Mode	Active	7	
C Tension	Compr	ession	
Axial force	0	N 🔽 Set initial value	
Sensitivity	0.5	N	
Gap change limit up	1.0	mm	
Gap change limit down	1.0	mm	
Return to window	C Return	to initial value	

- It is important to setup normal force control during any temperature change testing or curing testing
- Some general suggestions for normal force control
 - For torsion testing, set normal force in tension: 1-2N ± 0.5-1.0N
 - For curing or any parallel plate testing, set normal force in compression: 0 ± 0.5N

ARES G2: Temp Step

Environmental Contro	6		
Start temperature	-100	°C Inherit	
Soak time	0	s Wait for temperate	ure
End temperature	100	°C	
Temperature step	5	°C	
Step soak time	0	S	
Test Parameters			
Strain %	0.05	%	~
Single point		6	~
Angular frequency	6.28	rad/s 🐱	

ARES G2: Temp Ramp

Step : Oscillation 🐱 Ter	nperature Rar	mp 💌	0 😭	
- Environmental Control				
Start temperature	-150.000	°C	Inherit value	
Soak time	0	hh:mm:ss	Wait for temperature	
Ramp rate	3.0	°C/min		
End temperature	200.000	°C		
Soak time after ramp	0	hh:mm:ss		
Estimated time to complete	01:56:40	hh:mm:ss		
Test Parameters				
Sampling interval	20.0	s/pt	~	
Strain %	0.03	%	~	
Single point				
Angular frequency	6.28	rad/s 🗸		

Data aquisition

ARES G2: Axial force control and auto-strain

itep : Conditioning - Optic	ons 🗸		
Mode	Active 🔽		
Tension	Compres	sion	
Axial force	0	N Set initial value	
Sensitivity	5.0	N	
Max gap change up	2.0	mm	
Max gap change down	0.5	mm	
Return to window	O Return to	commanded force	
Disable axial force below G* =	1000.0	Pa	
Priority	O Data san	npling 💿 Force control	
Auto strain adjustment			
Mode	Enabled	¥	
Strain adjust	20.0	%	
Minimum strain	0.01	%	

DHR: Stress Relaxation

Experiment 1]				
🗧 🗧 Sample: PC	DMS				
Seometry:	40mm parallel plate,	Peltier plate S	teel		
* Procedure	of 1 step				🖗 🖩 👭 💋
∧ 1: Ste	ep (Transient) Stress	Relaxation			
_ Er	nvironmental Control —		,		1
Te	emperature	25	°C	🔲 Inherit set point	
So	oak time	0	s	Wait for temperature	
_ Te	est Parameters ———				7
Du	uration	180.0	s		
%	. Strain	5.0	%	•	
	Steady state sensing				
%	Tolerance	5.0			
0	ver time period	30.0	s		
Co	onsecutive within tolera	nce 3			
^	Advanced				_
:	Strain rise time 0.01	s			
*	Data acquisition				
*	Step termination				

ARES G2: Stress Relaxation

Procedure		<u> </u>	
Step : Step (Transie	nt) 🐱 Stress Relaxation	~	3
C Environmental Contro	I		
Temperature	25.000 °C	Inherit value	
Soak time	0 hh:mm:s	s Wait for temperature]
- Test Parameters			
Duration	03:00 hh:mm:s	5	
Strain %	10.0 %	~	
	O Linear 💿	Log	
Number of points	200		

DHR: Creep Recovery

Recovery Creep [Experiment 1] [Experiment 1] Sample: PDMS Seometry: 40mm parallel plate, Peltier plate Steel Seometry: 40mm parallel plate, Peltier plate Steel 📁 🔒 Procedure of 2 steps 🖗 🔒 🚜 Procedure of 2 steps 1: Step (Transient) Creep 25°C, 300s, 500Pa 1: Step (Transient) Creep ▲ 2: Step (Transient) ▼ Creep ▼ 🙆 🛧 🦊 👭 ⊘ Environmental Control Environmental Control Temperature 25 °C Inherit set point 25 °C Inherit set point Temperature 0 Soak time Wait for temperature s 0 Soak time s Wait for temperature Test Parameters Test Parameters 300 Duration s 600.0 Duration s 500.0 Pa Stress • • 0 Pa Stress Steady state sensing Creep braking Steady state sensing 5.0 % Tolerance % Tolerance 5.0 30.0 Over time period 30.0 Over time period Consecutive within tolerance 3 Consecutive within tolerance 3 Data acquisition Data acquisition Step termination Step termination ~ 2: Step (Transient) Creep 25°C, 300s, 0Pa

• Rule of thumb: recovery time is 2-3 times longer than creep time

ARES G2: Creep

Procedure Step : Conditioning	Stress Control 💌			Requires mean modulus to stan back loop	
Coad Precomputed Environmental Control - Temperature	Run and Calculate 25.000 °C	Inherit value		Dack loop	
Soak time Test Parameters Strain %	0 hh:mm:ss	Wait for temperature			
Save creep file Creep file path:			Step : Step (Transient		
 Data aquisition Motor and trans 	sducer work in a	feedback loop	Environmental Control – Temperature Soak time Test Parameters Duration	25.000 °C Inherit value 0 hh:mm:ss Wait for temperature 05:00 hh:mm:ss	
			Stress Sampling Number of points	50.0 Pa O Linear Log 200 Image: Constraint of the second seco	

Programming Creep on a ARES G2

- Set up a pre-test and get the sample information into the loop
- Stress Control Pre-test: frequency sweep within LVR

Sample: PET film LN2 (only				
Geometry: Tension fixt	ure (rectangle)				
Procedure of 2 steps				S 🗟 🛃 🖋	
 1: Conditioning St 	ress Control				
C Load Precomp	-	and Calcul	ate		
Temperature	30	°C	Inherit set point		
Soak time	60.0	s	Wait for temperatur	e	
- Test Parameters	;				
Strain %	0.05	%			~
Save stress or	ntrol PID file				
Stress control PI	D file path: W:\201	1\creep.cre	ер	Sav	e File
Data acquisit	ian				

ARES G2: Creep - Recovery

Step : Conditioning	 Stress Con 	itrol 🗸	0 😭 🕚
Step : Step (Transier	nt) 🔽 Creep	×	0
Environmental Control			
Temperature	25	°C Inherit value	
Soak time	0	hh:mm:ss Wait for temperature	
Test Parameters			
Duration	05:00	hh:mm:ss	
Stress	50.0	Pa	
Sampling	Linear	OLog	
Number of points	200	~	
Steady state sensing	1		
% Tolerance	5.0		
Over time period	30.0	s	

nvironmental Control		12 1943	
emperature	25	°C Inherit value	
oak time	0	hh:mm:ss Wait for temperature	
est Parameters			
uration	15:00	hh:mm:ss	
ress	0	Pa	
mpling	Linear	OLog	
Number of points	200	~	
]Steady state sensing			

Appendix 3: Software Screen Shots Rheology Advantage

AR: Peak Hold

Name Flow procedure	Test Step termination Advanced General	Control variables:
Steps Image: Conditioning Step Image: Peak hold step Image: Post-Experiment Step	Test settings Hold shear rate (1/s) at 10.00 Duration (hh:mm:ss) 0:01:00	 Shear rate Velocity Torque Shear stress
Notes	Delay time (hh:mm:ss) ✓ 0:00:01 Other settings Temperature (°C) 25.0	

• Multiple rate can be done by adding more peak hold steps

AR: Continuous Ramp

Name	Test Step termination Advanced General	
Flow procedure	Test type Continuous ramp	
Steps		ontrol variables:
Conditioning Step	Test settings	Shear rate
Continuous ramp stepPost-Experiment Step	Ramp shear rate (1/s)	Velocity
	From 0 to 100.0	Torque
	Duration (hh:mm:ss) 0:03;00	Shear stress
	Mode linear 🕶	
	Sampling	
lotes	Delay time (hh:mm:ss)	
10165	Other settings	
	Temperature (°C) 25.0 Wait	
	Match duration and start value to previous step	

- Thixotropic loop be done by adding another ramp step
- Or go through the template

AR: Continuous Ramp

t Instrument Geometry Procedure Notes	Experiment Options Wizard Help Templates	
	New procedure Select the procedure type Flow Creep Oscillation Mixed Stress relaxation	New flow procedure Default flow test Template (Standard Up/Down experiment)
		Ramp shear rate (1/s)
		From 0 to 100
		Duration (hh:mm:ss) 0:03:00
Name Up/down experiment	Test Step termination Advanced General	Mode linear 🗸
Steps	Test type Continuous ramp	Delay time (hh:mm:ss) v 0:00:01
Conditioning Step	C Test settings	
 ✓ Up ✓ Down 	Ramp shear rate (1/s)	Temperature (°C)
Post-Experiment Step	From 0 to 100.0	
	Duration (hh:mm:ss) 0:03:00	T
L	Mode linear 👻	—
	Sampling	
	Delay time (hh:mm:ss) v 0:00:01	
Notes		
Up/down experiment	Other settings Temperature (°C) 25.0 Wait	
	Temperature (°C)	
	Match duration and start value to previous step	

AR: Stepped Flow

Name	Test Step termination Advanced General
Flow procedure	Test type Stepped flow
Conditioning Step	Test settings
tepped flow step ost-Experiment Step	Ramp shear rate (1/s)
	From 0.1000 to 100.0
	Mode log 💙
	Points per decade 5
	Other settings
	Temperature (°C) 25.0 Wai
lotes	Constant time (hh:mm:ss) 0:00:30
	Average last x seconds 0:00:10

Control variables:

- Shear rate
- Velocity
- Torque

Shear stress

AR: Steady State Flow

Na <u>m</u> e Flow procedure	Test Step termination Advanced		Control variables:
Steps ✓ Conditioning Step ✓ Flow Step ✓ Post-Experiment Step	Test type Steady state flow Test settings Ramp Ramp shear rate (1/s) From 0.1000 Mode log Points per decade	► 100.0	 Shear rate Velocity Torque Shear stress
No <u>t</u> es	<u>T</u> emperature (℃) <u>S</u> ample period (hh:mm:ss) <u>Steady state</u> Percentage tolerance <u>C</u> onsecutive within tolerance <u>Maximum point time (hh:mm:ss)</u>	25.0 <u>₩</u> ait 0:00:10 5.0 ↓ 3 ↓ 0:01:00 ↓	 Steady state algorithm

- During the test, the dependent variable (speed in controlled stress mode or torque in controlled shear rate mode) is monitored with time to determine when stability has been reached.
- An average value for the dependent variable is recorded over the *Sample period*.
- When consecutive average values (Consecutive within tolerance) are within the Percentage tolerance specified here, the data is accepted.
- The software will also accept the point at the end of the *Maximum point time*, should the data still not be at a steady state value.

AR: Flow Temp Ramp

Name	Test Step termination Advanced General	
Flow procedure	Test type Temperature ramp	
Steps		
 Conditioning Step Temperature ramp step Post-Experiment Step 	Test settings From 20.0 to 100.0 °C Ramp rate (°C/min) ✓ 3.00 ✓ Wait for start temperature ✓ ✓ ✓	To minimize thermal lag, the ramp rate should be slow. 1-5℃/min.
Notes	Sampling Delay time (hh:mm:ss) Controlled variable shear rate (1/s)	Control variables: Shear rate Velocity

- Torque
 - Shear stress

AR: Stress Sweep

Name	Test Step termination Advanced Controlled stress General	
Oscillation procedure	Test type Stress sweep	
Steps		
Conditioning Step	C Test settings	Variables:
 Stress sweep step Post-Experiment Step 	Sweep torque (micro N.m)	Stress
	From 0.10000 to 1000.0	Torque
	Mode log 🕶	
	Points per decade 5	
	Temperature (°C) 25.0 Wait	
Notes	Equilibration time (hh:mm:ss)	
	angular frequency (rad/s) <	

- For running an unknown sample, it is recommended to sweep torque instead of stress. Because stress is geometry dependent
- The starting torque can be from the lowest of the instrument specification
- The maximum torque is sample dependent. You can setup a high number and manually stop the test when it gets outside the LVR.

AR: Time Sweep

Name Oscillation procedure	Test Step termination Advanced Controlled strain General	
Steps ✓ Conditioning Step ✓ Time sweep step ✓ Post-Experiment Step	Test type Time sweep Test settings Duration (hh:mm:ss) 0:30:00 Delay time (hh:mm:ss) 0:00:10	
	Temperature (°C) 25.0 Wait Equilibration time (hh:mm:ss) 0:01:00	Control variables: Osc torque Osc stress
Notes	% strain 6.283	 Displacement % strain Strain

The strain needs to be in the LVR

AR: Pre-shear Conditions

Name	Settings	Control normal force	Advanced	General
Oscillation procedure	⊂ Initial T	emperature		
Steps	✓ Set	temperature		
Conditioning Step		Temperature (°C)		25.0
 ✓ Time sweep step ✓ Post-Experiment Step 	Wa	it for correct temperatu	re	
	Norma	I force		
	Wa	iit for normal force		
N	norma	al force (N)	~	0
	Pre-sh	ear		
	✓ Per	form pre-shear		
Notes	shear	rate (1/s)	~	100.0
	Durati	ion (hh:mm:ss)		0:01:00
	Equilib	ration		
	Per	form equilibration		
	Duratio	on (hh:mm:ss)		0:02:00
	Wa	ait for zero velocity		

- The goal for pre-shear is to remove the sample history at loading
- For high viscosity sample, use low rate (10 1/s) and long time (2 min.)
- For low viscosity sample, use high rate (100 1/s) and short time (1 min.)

AR: Frequency Sweep

Name Oscillation procedure Steps	Test Step termination Advanced Controlled strain General Test type Frequency sweep
 Conditioning Step Frequency sweep step Post-Experiment Step 	Test settings angular frequency (rad/s) 100.0 to
	Mode log Control variables: Points per decade 5 Control variables: Osc torque
	Temperature (°C) 25.0 Wait Osc stress Equilibration time (hh:mm:ss) 0:01:00 Image: Construction time (hh:mm:ss) Image: Construction time (hh:mm:ss)
Notes	Controlled Variable % strain % strain 2.0 Strain Strain

- Common frequency range: 0.1 100 rad/s.
- Low frequency takes long time
- As long as in the LVR, the test frequency can be set either from high to low, or low to high
- The benefit doing the test from high to low
 - Being able to see the initial data points earlier

AR: Temp Sweep

Name Oscillation procedure	Test Step termination Advanced Controlled strain General Test type Temperature sweep ✓
Steps Image: Conditioning Step Image: Condititititititititititititititititititit	Test settings Temperature (°C) -100.0 to 100.0
	Temperature increment (°C) 5.0 Equilibration time (hh:mm:ss) 0:05:00 Controlled Variable 0:05:00 % strain 0.10000 % strain 0.10000
Notes	Frequency () Single frequency (Hz)Multiple 1.000Displacement % strain StrainStrain

• The strain needs to be in the LVR

AR: Temp Ramp

Name Oscillation procedure	Test Step termination Advanced Controlled strain General	
Steps Conditioning Step Temperature ramp step Post-Experiment Step	Test settings Temperature (°C) Start from current temperature Wait for start temperature Equilibration time (hh:mm:ss) 0:05:00 Ramp rate (°C/min)	To minimize thermal lag, recommend using slow ramp rate e.g. 1-5°C/min.
Notes	Delay time (hh:mm:ss) Controlled Variable % strain 0.10000	
	Frequency Single frequency (Hz) 1.000	Control variables: Osc torque
 The strain n 	eeds to be in the LVR	 Osc stress Displacement % strain Strain

AR: Normal Force Control

\$ σ γ	Name Oscillation procedure Steps	Settings Control normal force Advance Use current instrument settings	During a test
다 (수) 110 고3	 Conditioning Step Temperature ramp step Post-Experiment Step 	Normal force (N) Normal force tolerance (N) Gap change limit down (micro m)	0 1.000 1000
	Before starting a test	Gap change limit up (micro m)	1000
	Notes Control normal force	Action when outside range Return to initial value Return to window	TensionCompression

- It is important to setup normal force control during any temperature change testing or curing testing
- Some general suggestions for normal force control
 - For torsion testing, set normal force in tension: 1-2N ± 0.5-1.0N
 - For curing or any parallel plate testing, set normal force in compression: 0 ± 0.5N

AR: Stress Relaxation

Tomporature (°C)	
	Wait
Equilibration time (hh:mm:ss) 0:02:	00
% strain	2.0000
Steady state	
Terminate on steady state	
Percentage tolerance	5.0 🌲
Sample period (hh:mm:ss)	0:00:30
Consecutive within tolerance	3
Maximum step time (hh:mm:ss)	0:10:00
	Applied value % strain Steady state Terminate on steady state Percentage tolerance Sample period (hh:mm:ss) Consecutive within tolerance

Motor and transducer work in a feedback loop

AR: Creep Recovery

	9	Steps	procedure nditioning St ep covery st-Experimen	-				
Test Step termination Advanced	General			Test	Step termination Advance	d General		
Temperature (°C)	25.0		Wait	Ten	nperature (°C)	25.0		Wait
Equilibration time (hh:mm:ss)	0:02:00			Equ	ilibration time (hh:mm:ss)	0:02:00		
Applied value				App	lied value			
shear stress (Pa)	~	500.0		she	ar stress (Pa)	~	0	
				Stea	dy state			
Steady state					Terminate on steady state			
Terminate on steady state				Pe	ercentage tolerance		0.1	
Percentage tolerance		5.0	-	Sa	mple period (hh:mm:ss)		0:00:3	0
Sample period (hh:mm:ss)		0:00:	30 🌩	Co	insecutive within tolerance		3	
Consecutive within tolerance		3						
				Max	timum step time (hh:mm:ss)		0:30:00	
Maximum step time (hh:mm:ss)		0:10:0	0	1	No time limit		L	
No time limit					Creep braking			

• Rule of thumb: recovery time is 2-3 times longer than creep time

AR : Steady State Algorithm Creep

Steady state		
Terminate on steady state		Default
Per <u>c</u> entage tolerance	5.0 -	values
Sample period (hh:mm:ss)	0:00:30 🚔	shown
Consecuti <u>v</u> e within tolerance	3 📑	310 101

- During the test, the angular velocity is monitored with time to determine when stability has been reached.
- An average value for the angular velocity is recorded over the Sample period.
- When consecutive average values (Consecutive within tolerance) are within the tolerance specified here, the data is accepted.

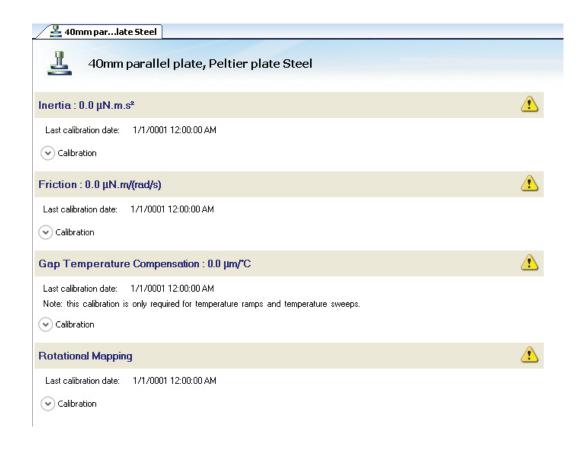
Appendix 4: Rheometer Calibrations DHR and AR

DHR – Calibration Options

- Instrument Calibrations
 - Inertia (Service)
 - Rotational Mapping
 - Oscillation Mapping (recommended for interfacial measurements)

DHR – Inertia Calibration

- Go to the Calibration tab and select Instrument
 - Make sure there is no geometry installed and then click calibrate


Experiments	File Manager 🔷 🕈 🤉	
Results Geometries Calibration	Calibration	
Instrument Instrument		
ertia: 21.0325 μN.m.s ^z .ast calibration date: 11/15/2011 7:36: Calibration	14 AM	
Before calibration Please ensure that no geometry is attac	ched and that the spindle is free to rotate.	
Calibration will take 30 seconds		

DHR – Geometry Calibration

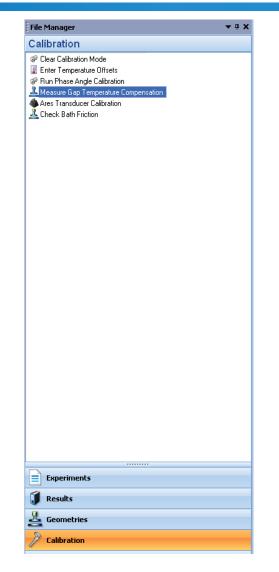
- Geometry Calibrations:

- Inertia
- Friction
- Gap Temperature Compensation
- Rotational Mapping

TA Tech Tip – Geometry Calibrations

Cilck to Sur										
	I	Plat	te o	r Co	one					
G	eomet	ry	Cal	ibra	tion	s-	D	HF	R	
G	eomet	ry	Cal	ibra	tion	s-	D	HF	7	

 Videos available at <u>www.tainstruments.com</u> under the Videos tab or on the TA tech tip channel of YouTube[™] (<u>http://www.youtube.com/user/TATechTips</u>)



Rheometer Calibrations ARES-G2

ARES-G2 – Calibration Options

- Instrument Calibrations
 - Temperature Offsets
 - Phase Angle (Service)
 - Measure Gap Temperature Compensation
 - Transducer
- Geometry Calibrations:
 - Compliance and Inertia (from table)
 - Gap Temperature Compensation

ARES-G2 – Transducer Calibration

-			alibration		
	-		Transducer Calibration Procedure		
			Torque O Normal	Force	
11)	Torque Calibration		
	P		1. Install the calibration fixture and	pully (without weigh	nt)
		1	2. Zero Torque Transducer	Zero	
			3. Hang weight from the pulley		
			Calibration mass	500.000	g
		Å	Moment arm length	2.50000	cm
	0	2	Applied Torque	1250.00] g cm
			4. Measure resulting torque	Measure	
			New calibration factor	0.00000] g cm
			Abort	Apply	
Transducer					1
Torque	-0.720	gcm	Torque calibration factor	2106.05	gcm
Normal Force	-53.202	g	Normal force calibration factor	2090.05	g
Status	Intializing 1	Transducer			1

ARES-G2 – Geometry Calibration

* Geometry: 40mm paralle	el plate, S	tainless stee	el	
		_		
Diameter	40	mm		
Gap	1.0	mm		
Loading gap	10.0	mm		
Trim gap offset	0.05	mm		
Material Stainless	steel 🐱			G
Minimum sample volu	me is 1.25	664 cm ³		C
Constants			K	
Gap temperature cor	npensation	ı ———		
Expansion coefficient	· · · ·	0.0	µm/°C	
Move stage to mai	intain starti	ng gap	, 	 С
Upper compliance	[0.0	mrad/N.m	
Lower compliance	[0.0	mrad/N.m	
Geometry inertia	Ī	0.0	µN.m.s²	
Stress constant	[79577.5	Pa/N.m	 C
Strain constant	[20.0	1/rad	C
Stress constant (linear	r) (795.775	Pa/N	
Strain constant (linear)	1000.0	1/m	
Normal stress constar	nt [1591.55	Pa/N	

- Gap Temperature Compensation
 - Enter manually or run calibration
- Compliance and Inertia
 - (from table in Help menu)
- Geometry Constants
 - Calculated based on dimensions

Geometry Inertia & Compliance- Help Menu

• Click here for a spreadsheet that contains the inertia, compliance, and gap compensation data for the majority of the ARES-G2/ARES tooling.

Search		0.23								TRIOS
nos Search 1	Click on calumn header		etries							
ARE S-G2 Test Geometri et	Enter Test in lass above Catalog Number	Part Number	Size (mm)	Туре	Additional Features	Usage (ARES Classic or ARES-G2)	Material	Window Style	Inertia uN*m*s1	Compliance mrad/N*m
er. Setting Up a Ste p (Transient) Creep			-	Cone				-	and the second second	
Test Inertia and Complia	708.01002.1	401.00536.1	25mm	Cone	.02 radian .100° dia tip	Both	SST 316	Rectangular	3.59E+00	2.67E+00
nce Correction #	708.01002.10	401.00536.10	25mm	Cone	.10 radian .040" dia tip	Both	INVAR-36	Rectangular	3.60E+00	3.57E+00
Loading ARES-02 Samples		401.00536.11	25mm	Cone	.10 radian .040° dia tip	Both	SST 17-4PH	Rectangular	3.47E+00	2.63E+00
Configuring a New Geometry		401.00536.12	25mm	Cone	.10 radian .040° dia tip	Both	TITANIUM 6AL-4V	Rectangular	1.96E+00	4.75E+00
Understanding the Variables		401.00536.13	25mm	Cone	.02 radian .235" dia tip	Both	TITANIUM GAL-4V	Rectarigular	1.96E+00	4.75E+00
Calculating Drift Cor		401.00536.14	25mm	Cone	.04 radian .236° dia tip	Both	TITANIUM 6AL-4V	Rectangular	1.98E+00	4.75E+00
rection for Recover able Compliance		401.00536.15	25mm	Cone	.01 radian .157" dia tip	Both	TITANIUM GAL-4V	Rectangular	1.98E+00	4.75E+00
Transformations Operating the Diele		401.00536.16	25mm	Cone	.10 radian .040° dia tip	Both	HASTELLOY-B2	Rectangular	4.23E+00	2.49E+00
chic Accessory	708.01002.17	401.00536.17	25mm	Cone	.01 radian .157" dia tip	Both	SST 316	Rectangular	3.59E+00	2.67E+00
About the TRIDS G uardian ^{tw} Option		401.00536.2	25mm	Cone	.02 radian .100° dia tip	Both	INVAR-36	Rectangular	3.600+00	3.57E+00
Discrete Retardatio In Time Spectrum		401.00536.3	25mm	Cone	.02 radian .100" dia tip	Both	SST 17:4PH	Rectangular	3.47E+00	2.63E+00
Setting Up an Oscill		401 00536.4	25mm	Face	02 radian 100° dia tin	Both	TITANTIM 6AL-4V	Rectangular	1.98E+00	4 755+00

What if the online table does not list a compliance value for my specific geometry? Use the compliance value for a geometry of the same/similar dimension, type, and material.

ARES-G2 - Gap Temperature Compensation

New Expansion Coefficient µm Commit Temperature / Time Profile Naintain Zero Gap Maintain Force 5.0 N Starting Temperature -80 °C Start Temperature Equilibration Time 300 s Start Temperature Contemporature		ainless steel
Current Expansion Coefficient 0.00000 µm New Expansion Coefficient µm Commit Temperature / Time Profile ○ Run at Gap ⓒ Maintain Zero Gap Maintain Force 5.0 N Starting Temperature 5.0 °C Start Temperature Equilibration Time 300 s ⓒ Ramp Temperature ○ Step Temperature	ies 🗌	
New Expansion Coefficient μm Commit Commit Temperature / Time Profile Commit Run at Gap Maintain Zero Gap Maintain Force 5.0 N Starting Temperature -80 °C Start Temperature Equilibration Time 300 s ③ Ramp Temperature Step Temperature		
Temperature / Time Profile Image: Run at Gap Image: Run at Gap Maintain Zero Gap Maintain Force Starting Temperature Start Temperature Equilibration Time Start Temperature Ramp Temperature		· · ·
 Run at Gap Maintain Zero Gap Maintain Force 5.0 N Starting Temperature 80 *C Start Temperature Equilibration Time 300 s Ramp Temperature Step Temperature 		Commit
Maintain Force 5.0 N Starting Temperature -80 °C Start Temperature Equilibration Time 300 s Start Temperature Step Temperature	mperature / Time Profile	
Starting Temperature -80 °C Start Temperature Equilibration Time 300 s Start Temperature C Step Temperature	🔘 Run at Gap 🛛 💿 Mainta	in Zero Gap
Start Temperature Equilibration Time 300 s	Maintain Force	5.0 N
Ramp Temperature Step Temperature	Starting Temperature	-80 °C
	Start Temperature Equilibration Tim	e 300 s
Temperature Ramp Rate 1.0 °C/min	🧿 Ramp Temperature 🛛 Step T	emperature
	Temperature Ramp Rate	1.0 °C/min
Final Temperature 65 °C	Final Temperature	65 °C
Final Temperature Equilibration Time 300 s		e 300 s

General Rheometer Maintenance

- Air Supply
 - Dry particulate-free air (dew point -40 °C)
 - Check filters/regulators on a periodic basis to ensure proper pressure, free of moisture/oil/dirt buildup.
 - If air must be turned off, then make sure that the bearing lock is fastened
 - NOTE: Do not rotate drive-shaft if air supply is OFF!
- Location
 - Isolate the instrument from vibrations with a marble table or Sorbathane pads.
 - Drafts from fume hoods or HVAC systems and vibrations from adjacent equipment can contribute noise to measurements, particularly in the low torque regime. Use a Draft Shield to isolate instrument from drafts.

General Rheometer Maintenance - Peltier

Circulator Maintenance

- Proper operation of a fluid circulator is vital for correct and efficient operation of Peltier-based temperature control devices.
- Check fluid levels and add anti-fungal additive regularly.
 - Note: if operating circulator below 5°C then it is recommended to fill the circulator with a mixture or material with a lower freezing point than water to prevent permanent circulator damage.
 - Example: add ~20% v/v ethanol to water
- Keep it clean!
 - Flush and clean circulator, Peltier system, and tubing at first sight of contamination.
 - When not in use, it is strongly recommended to deactivate the Peltier device and turn off the circulator.

Geometry Information – Estimated Min and Max Shear Rates

•				Sample	Max Shear Rate	Min Shear Rate
Geometry	Diameter (mm)	Degree	Gap (micron)	Volume (mL)	(approx) 1/s	(approx) 1/s
		0	1000	0.05	1.20E+03	4.00E-07
		0	500	0.03		
		0.5	18	1.17E-03		
	8	1	28	2.34E-03		
		2	52	4.68E-03		
		4	104	9.37E-03		
		0	1000	0.31	3.00E+03	1.00E-06
		0.5	18	0.02	3.44E+04	1.15E-05
	20	1	28	0.04	1.72E+04	5.73E-06
		2	52	0.07	8.60E+03	2.87E-06
		4	104	0.15	4.30E+03	1.43E-06
		0	1000	0.49	3.75E+03	1.25E-06
Parallel Plate		0.5	18	0.04		
and Cone and	25	1	28	0.07		
Plate		2	52	0.14		
		4	104	0.29		
	40	0	1000	1.26	6.00E+03	2.00E-06
		0.5	18	0.15	3.44E+04	1.15E-05
		1	28	0.29	1.72E+04	5.73E-06
		2	52	0.59	8.60E+03	2.87E-06
		4	104	1.17	4.30E+03	1.43E-06
	60	0	1000	2.83	9.00E+03	3.00E-06
		0	500	1.41		
		0.5	18	0.49	3.44E+04	1.15E-05
		1	28	0.99	1.72E+04	5.73E-06
		2	52	1.97	8.60E+03	2.87E-06
		4	104	3.95	4.30E+03	1.43E-06
	Conical Din Rotor			19.6	4.36E+03	1.45E-06
Concentric	Recessed End			6.65	4.36E+03	1.45E-06
Concentric	Double Wall			11.65	1.59E+04	5.31E-06
Cymruer	Pressure Cell			9.5		
	Standard Vane			28.72		

Basic Parameters and Units

```
Stress = Force /Area [Pa, or dyne/cm<sup>2</sup>]
```

```
\sigma = shear stress
```

Strain = Geometric Shape Change [no units]

 γ = shear strain

Strain Rate or Shear Rate = Velocity Gradient [1/s]

 $\dot{\gamma}$ = shear strain rate

Modulus = Stress / Strain [Pa or dyne/cm²]

G = Shear Modulus

Compliance = Strain / Stress [1/Pa or cm²/dyne]

Typically denoted by J

Viscosity = Stress /Strain Rate [Pa·s or Poise]

Denoted by $\boldsymbol{\eta}$

S.I. units × 10 *= c.g.s. units*

Common Symbols used in Rheology

Greek

 γ (gamma): Shear Strain $\dot{\gamma}$ (gamma dot): Shear Rate δ (delta): Phase Angle ε (epsilon): Elongational Strain *ė* (epsilon dot): Elongational Strain Rate η (eta): Shear Viscosity $\eta_{\rm E}$ (eta E): Elongational Viscosity η^* (eta star): Complex Viscosity μ (mu): Microns v (nu): Frequency (Hz) ρ (rho): Density σ (sigma): Shear Stress τ (tau): Elongational Stress ω (omega): Angular Frequency (rad/sec)

Latin

a_T: Temperature shift factor **B: Bulk Creep Compliance D:** Tensile Compliance E: Young's (Tensile) Modulus E': Tensile Storage Modulus E": Tensile Loss Modulus G: Shear Modulus G': Shear Storage Modulus G": Shear Loss Modulus E^{*} or G^{*}: Complex Modulus J: Shear Compliance K: Bulk Modulus (or also Stiffness) N₁: Normal Force in Steady Flow T: Temperature T_g: Glass Transition Temperature

Sample Preparation Polymers

Know Your Sample – Polymers

- Polymer samples come in different forms (e.g. powder, flakes, pellets) and can be sensitive to environmental conditions
- Careful sample preparation techniques are required to prepare good test specimens for reproducible testing
 - Molding a sample
 - Handling powders, flakes
 - Controling the environment

Molding Polymer Pellets

- The best approach is to mold a sample plate (50x50 mm² or 100x100 mm²)
- Molding temperature: $10 20 \degree C >$ than test temperature
 - Apply pressure: 8 12,000 lbs
 - Keep at elevated temperature long enough to let the sample relax
 - Cool down slowly under pressure to avoid orientations
- Punch out a sample disk (8 or 25 mm)

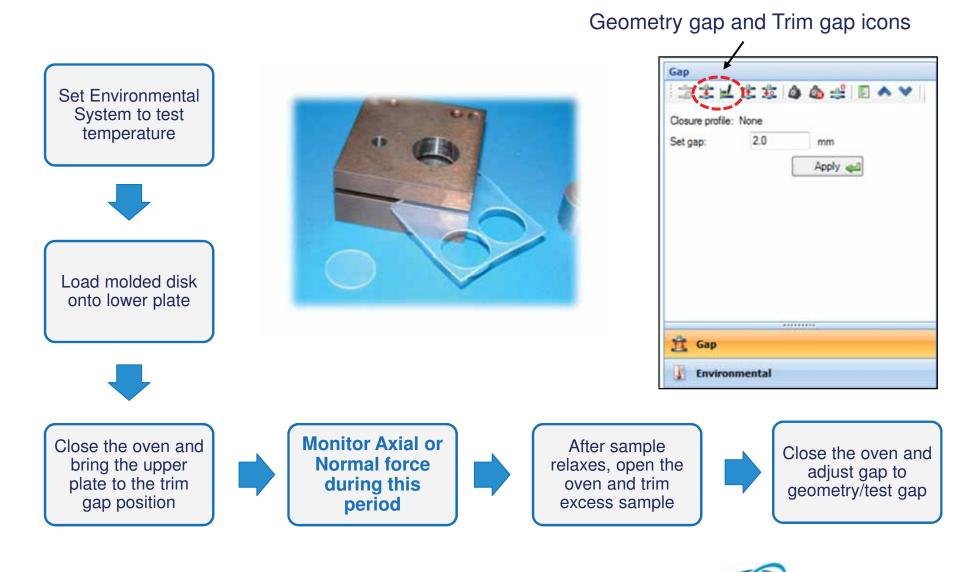
Molding Powders and Flakes

- Before molding at high temperature, the sample has to be compacted cold to reduce the volume
- The compacted samples are transferred to the mold
- Follow steps from the molding pellets procedure
- Note: Sample may need to be stabilized or dried to avoid degradation

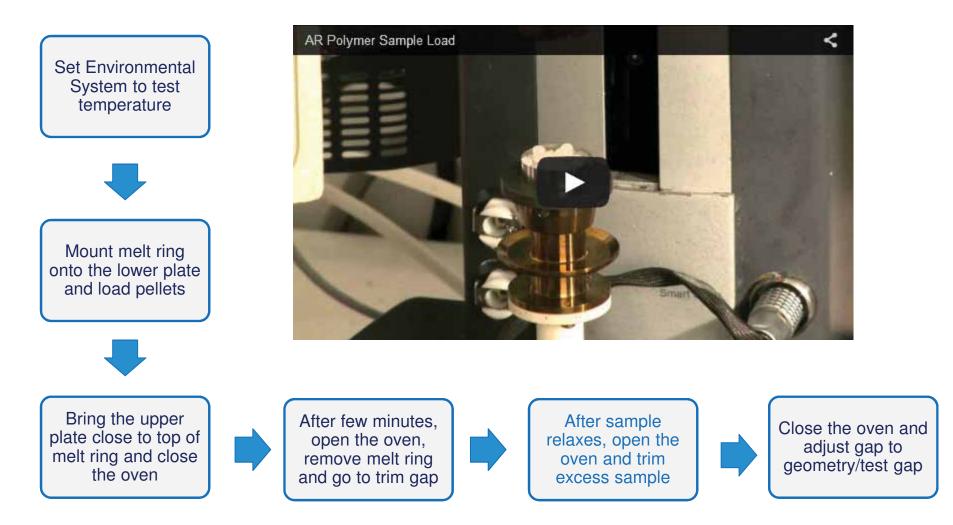
Preparing Semi-solid Samples

- Cut rectangular sheets of prepreg or adhesive (30x30mm)
- Alternate direction of layer approx. 5 layer on top of each other (remove release paper from PSA)
- Compress the stack of sample layers in a press (4 5000 lbs)
- Punch out 25 mm disks

Controlling Environmental Conditions During Sample Prep


- Polypropylene and Polyolefines in general tend to degrade fast – need to be stabilized by adding antioxidents
- Moisture sensitive materials such as polyamides and polyester require drying in vacuum or at temperatures around 80 ℃.
- Materials such as Polystyrene or Polymethylmethacrylate (PMMA) also absorb moisture. In the melt phase, the gas separates into bubbles and the sample foams
- Pre-drying in vacuum is essential prior to testing

Vacuum oven



Loading a Molded Disk

A TAINSTRUMENTS.COM

Loading Polymer Pellet Samples

Sample Preparation Structured Fluids

Know Your Sample – Structured Fluids

- Structured fluids can range in consistency from low viscosity (e.g. milk) to high viscosity, pasty materials (e.g. tooth paste)
- Structured materials are very sensitive to mechnical and environmental conditions
- Be aware of largest particle size in sample and choose the geometry appropriately (cone vs parallel plate vs vane geometry)
- Samples can also be time dependent how you treat the sample (handling, loading, pre-conditioning) may affect test results!

Handling Low Viscosity Fluids

- Fluid samples which pour freely are relatively easy to handle prior to loading
- Keep the container closed to avoid evaporation of solvent or continuous phase
- Shake or stir sample to remove concentration gradients in suspensions
- Adequate shelf temperature may be necessary to avoid phase separation in emulsions
- Never return used sample into original flask to avoid contamination

Loading Low Viscosity Fluids

Motor : 🍪 🖨 🎕 ∿ 🔅		
SetTorque	*	
Set Velocity	*	
Velocity 1.0 rad/s		
Set Displacement	×	
Options	×	
	/ @ ?	

- Deposit fluid in the middle of the plate
- Set a motor velocity of ~ 1 rad/s and move to geometry gap
- Add additional material along the sides of the geometry capillary forces will draw the sample between the gap
- When finished, click on the "Stop Motor" button
- NOTE: If the sample is a structured fluid, setting a motor velocity will introduce shear history onto the sample and can destroy the sample structure!

Handling Paste/Slurry & Gel Materials

- The structure of high viscosity pastes and slurries may change with time
- Food samples, like dough, can change continuously
- The test samples need to be prepared carefully and consistently for each experiment to obtain reproducibility
- Slurries that may settle can gradually build a cake these samples have to be tested before sedimentation

Loading Pastes and Slurries

- Scoop up the paste with a spatula and deposit it at the center of the lower plate
- For less viscous materials, a syringe with a cut-off tip can be used
- Load ~ 10-20 excess material to ensure complete sample filling
- Set the gap to the trim gap and use exponential gap closure profile to minimize shear in the sample
- Lock the bearing, trim excess material and set final gap

Handling Gels

- Gels, especially chemical gels, may change irreversibly when large deformations are applied (for example, while loading)
- Prepare (formulate) the sample in the final shape required for the measurement so it can be loaded without deforming (cut, punch, ...)
- Alternatively, prepare the sample in situ on the rheometer \rightarrow systemic rheology
- Take care to avoid introducing air bubbles!

