How Does Land Use Policy Affect Local Labor Market and Housing Market?

Jiakai Zhang, New Mexico Tech

March 1, 2024

Motivation

- ▶ Land use policy
 - the set of rules and regulations that directly influence the use of commercial land, industrial land, or residential land use.

Motivation

▶ Land use policy

the set of rules and regulations that directly influence the use of commercial land, industrial land, or residential land use.

- ▶ Should the local government
 - increase the share of productive land use to facilitate regional economic growth?
 - increase the share of residential land use to attract more households?

Motivation

▶ Land use policy

the set of rules and regulations that directly influence the use of commercial land, industrial land, or residential land use.

- ▶ Should the local government
 - increase the share of productive land use to facilitate regional economic growth?
 - increase the share of residential land use to attract more households?
- ► The paper seeks to
 - ▶ investigate the effects of land use policy on the local labor market
 - address one of the problems associated with urbanization in China: soaring housing prices

Literature

▶ Land use policy

▶ agricultural land conversion

Fu et al., 2021; Adamopoulos and Restuccia, 2014

industrial and agricultural

Adamopoulos and Restuccia, 2020; Chen et al., 2022; Ghatak and Roy, 2007; Tian et al.,

2022; Cai et al., 2013

urban land

Fang et al., 2022; Fei, 2020; Zhao and Zhang, 2022; Zhang, 2022; Cai et al., 2017;

Brueckner et al., 2017

Literature

▶ Land use policy

agricultural land conversion

Fu et al., 2021; Adamopoulos and Restuccia, 2014

industrial and agricultural

Adamopoulos and Restuccia, 2020; Chen et al., 2022; Ghatak and Roy, 2007; Tian et al.,

2022; Cai et al., 2013

urban land

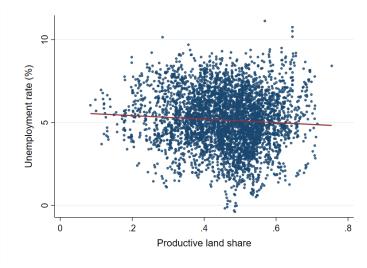
Fang et al., 2022; Fei, 2020; Zhao and Zhang, 2022; Zhang, 2022; Cai et al., 2017;

Brueckner et al., 2017

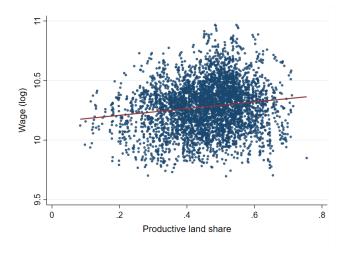
Urbanization

local labor market

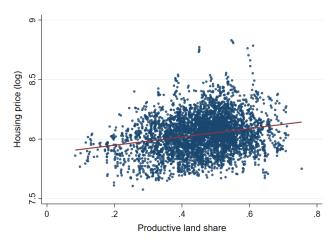
Sato and Zenou, 2015; Wheaton and Lewis, 2002; Tabuchi, 1986

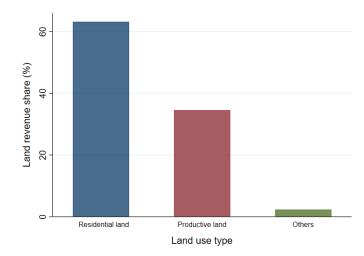

housing market

Dasgupta et al., 2014; Liu et al., 2018; Lan et al., 2021; Du and Zheng, 2020


Agenda

- 1. Motivating Facts
- 2. Empirical Strategy
- 3. Benchmark Model
- 4. Model Results and Quantitative Analysis
- 5. Conclusion


- ▶ Raising productive land use is associated with
 - ▶ more employment opportunities for local workers and immigrants


- ▶ Raising productive land use is associated with
 - ▶ more employment opportunities for local workers and immigrants
 - ▶ higher wage level of employees

- ▶ Raising productive land use is associated with
 - ▶ more employment opportunities for local workers and immigrants
 - ▶ higher wage level of employees
 - higher housing price

 Around 63% of land revenue has been collected from residential land

Endogeneity

- ▶ Reverse causality
- Omitted variables

- Endogeneity
 - Reverse causality
 - Omitted variables
- Instrumental variable
 - ▶ The residential development is curtailed by the presence of steep-sloped terrain (Saiz, 2010)

- Endogeneity
 - Reverse causality
 - Omitted variables
- Instrumental variable
 - ▶ The residential development is curtailed by the presence of steep-sloped terrain (Saiz, 2010)
 - Two Ratio
 - ▶ the average slope of the city to the average slope of the province
 - ▶ the average slope of the city to 15 degrees

- Endogeneity
 - Reverse causality
 - Omitted variables
- Instrumental variable
 - ► The residential development is curtailed by the presence of steep-sloped terrain (Saiz, 2010)
 - Two Ratio
 - ▶ the average slope of the city to the average slope of the province
 - ▶ the average slope of the city to 15 degrees
 - Additional variation
 - ▶ the household registered population
 - ▶ the share of National Development Zones (NDZ)

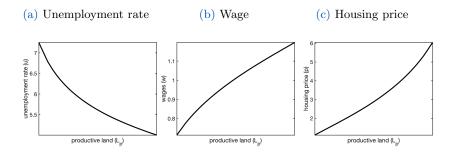
 \triangleright 2SLS

 $Y_{it} = \beta_0 + \beta_1 (\widehat{L_p}/\widehat{L})_{it} + \mathbf{X}_{it} \Phi + \mu_i + \theta_t + \varepsilon_{it}$

	Unemployment rate	log(wage)	log(price)	Unemployment rate	log(wage)	log(price)	
	(1)	(2)	(3)	(4)	(5)	(6)	
$(L_p/L)_{it}$	-0.1540***	1.0781^{***}	1.0218^{**}	-0.1249***	1.2990^{***}	1.6745^{***}	
	(0.0506)	(0.2879)	(0.0128)	(0.0551)	(0.3603)	(0.5807)	
Controls	YES	YES	YES	YES	YES	YES	
City fixed effect	YES	YES	YES	YES	YES	YES	
Year fixed effect	YES	YES	YES	YES	YES	YES	
	First-stage results for $(L_p/L)_{it}$						
$Ratio1_i \times Repop_{it}$	-0.1138***	-0.01089***	-0.1088***				
	(0.0186)	(0.0188)	(0.0038)				
$Ratio1_i \times NDZ_{it}$	0.0078**	0.0046	0.0047				
	(0.0032)	(0.0033)	(0.0033)				
$Ratio2_i \times Repop_{it}$				-0.1270***	-0.1200***	-0.1201**	
				(0.0238)	(0.0241)	(0.0241)	
$Ratio2_i \times NDZ_{it}$				0.0111**	0.0078*	0.0078^{*}	
				(0.0045)	(0.0045)	(0.0045)	
Wk. instrument F stats	20.71	17.37	17.46	15.98	13.06	13.18	
Ν	3,795	3,979	3,988	3,795	3,979	3,988	

Benchmark Model

The Economy


- A unit measure of homogeneous worker-consumers consume final goods and housing to maximize their utility ••
- \blacktriangleright There are search frictions in the labor market \bigcirc
- One representative firm in each city produces final goods using labor and commercial land •
- \blacktriangleright The city developer converts residential land into housing \bigcirc
- The regional government collects land revenue and rebates to household
- \blacktriangleright No aggregate uncertainty, the steady-state equilibrium \bigcirc

Model Results and Quantitative Analysis

Model Validation

▶ Increasing productive land use

- ▶ increases the tightness of the labor market
- ▶ increases the extra value that is created from job formation
- increases the household's expected income and reduces the supply of residential land

▶ Fitting the productive land share and TFP from data

Fitting the productive land share and TFP from data
Assume each cities *i* has its city-specific productivity A_i

$$A_i = \tilde{A}_i N_i^{\xi}$$

where \tilde{A}_i denotes city-specific fundamental productivity and ξ captures the degree of the agglomeration effect

Fitting the productive land share and TFP from data
Assume each cities *i* has its city-specific productivity A_i

$$A_i = \tilde{A}_i N_i^{\xi}$$

where \tilde{A}_i denotes city-specific fundamental productivity and ξ captures the degree of the agglomeration effect

► The indirect utility

$$\mathcal{U}_i = \frac{(1-\alpha)^{1-\alpha} \alpha^{\alpha} W_i p_i^{-\alpha}}{L_{0i}}$$

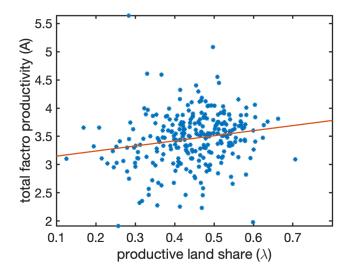
Fitting the productive land share and TFP from data
Assume each cities *i* has its city-specific productivity A_i

$$A_i = \tilde{A}_i N_i^{\xi}$$

where \tilde{A}_i denotes city-specific fundamental productivity and ξ captures the degree of the agglomeration effect

► The indirect utility

$$\mathcal{U}_i = \frac{(1-\alpha)^{1-\alpha} \alpha^{\alpha} W_i p_i^{-\alpha}}{L_{0i}}$$

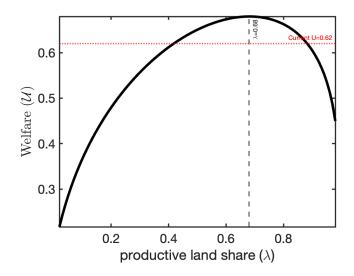

Mobility of labor among cities ensures that each city provides the same level of utility, U_i = U_j

Calibration and Moments

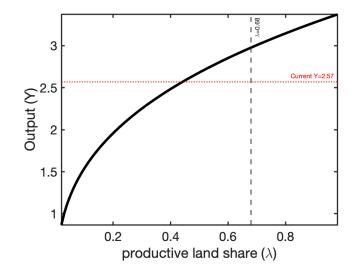
Assigned	Calibrated/Estimated			
Parameter	Description	Parameter	Description	
$\alpha = 0.30$	Housing expenditure share	$\gamma = 0.53$	Matching elasticity	
$\sigma = 1/3$	1-Labor share	$\phi = 1.16$	Matching efficiency	
s = 0.07	Separation rate	$\beta=0.26$	Bargaining power	
r = 0.04	Interest rate	Z = 0.66	Housing productivity	
$\tau = 0.13$	VAT tax rates	$\eta = 0.69$	Housing elasticity	
$\xi = 0.08$	The degree of the agglomeration	$\gamma_0 = 1.93$	Vacancy cost	
		b = 0.24	Unemployment benefits	
Moment				
	Data	N	Model	
Tightness θ	1.47	1.47		
Replacement rate $b/mean(w)$	18.6%	18.6%		
Unemployment rate u	4.89%	4.	4.75%	
Housing price wage ratio p/w	3.33	:	3.27	
Residential land revenue share	63.16%	63.30%		

parameters estimation

TFP and Land Share



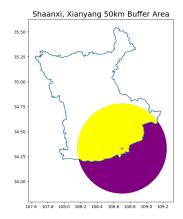
TFP and Land Share


Table 1: The Effect of Reallocating Land Share

	benchmark	reallocation	gain from reallocation
	x	x^*	$\log(x^*/x) \times 100\%$
	(1)	(2)	(3)
Output Y	2.57	2.61	0.65
Consumption C	4.32	4.36	0.50
Housing H	0.44	0.45	0.80
Unemployment rate \boldsymbol{u}	4.75	4.79	0.18
Wage w	1.32	1.33	0.32
Housing price p	4.45	4.66	1.97
Welfare \mathcal{U}	0.62	0.63	0.27

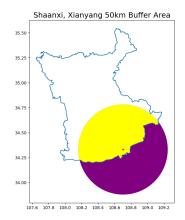
Uniform Land Share: Welfare

Uniform Land Share: Output



Future Work

▶ Land supply: unitary to heterogeneity.


Future Work

▶ Land supply: unitary to heterogeneity.

Future Work

▶ Land supply: unitary to heterogeneity.

• The ratio of residential land should be restricted due to the steepness of the terrain.

Conclusion

► Empirics

- $\blacktriangleright\,$ A 10% increase in the share of commercial land
 - reduces the unemployment rate by 29.6%
 - ▶ increases the wages by 11.06%
 - ▶ increases the housing prices by 10.25%

Conclusion

► Empirics

- ▶ A 10% increase in the share of commercial land
 - $\blacktriangleright\,$ reduces the unemployment rate by 29.6%
 - ▶ increases the wages by 11.06%
 - ▶ increases the housing prices by 10.25%
- ► Model
 - ▶ land use policy
 - search and matching

Conclusion

► Empirics

- $\blacktriangleright\,$ A 10% increase in the share of commercial land
 - $\blacktriangleright\,$ reduces the unemployment rate by 29.6%
 - ▶ increases the wages by 11.06%
 - ▶ increases the housing prices by 10.25%
- ► Model
 - ▶ land use policy
 - ▶ search and matching

► Findings

- Increasing the productive land share would reduce unemployment rates and raise wages and housing prices
- Reallocating the land use share with the rank of the city productivity accordingly would lead to Pareto improvement
- \blacktriangleright Uniform land use scheme can improve welfare by around 3.67%

Appendix

Summary Statistics

	Observations	Mean	Std. Dev.	Min	Max
$(L_p/L)_i t$	4,465	0.456	0.107	0.084	0.755
Unemployment rate	4,427	0.052	0.033	0.001	0.323
$\log(wage)$	4,703	10.271	0.646	8.641	11.917
$\log(\text{price})$	4,406	7.982	0.665	5.124	10.899
Population density	4,711	4.270	3.270	0.050	27.070
$\ln(\text{GDP per capita})$	4,710	15.961	1.112	12.643	19.605
$\ln(\text{FDI})$	4,528	9.495	2.137	0.000	14.941
Size of government	4,705	0.121	0.118	0.007	2.349

The Household

▶ The representative worker-consumers maximize their utility

$$\mathcal{U}(c,h) = c^{1-\alpha}h^{\alpha} \tag{1}$$

subject to the budget constraint

$$c + p \times h = W$$

The Household

▶ The representative worker-consumers maximize their utility

$$\mathcal{U}(c,h) = c^{1-\alpha}h^{\alpha} \tag{1}$$

subject to the budget constraint

$$c + p \times h = W$$

$$c = (1 - \alpha)W$$

▶ The demand for housing

$$h = \frac{\alpha W}{p}$$

Labor Market

► Matching function

$$M(u,v) = \phi u^{1-\gamma} v^{\gamma} \tag{2}$$

- ϕ represents the efficiency of the matching process and γ denotes the matching elasticity
- $\theta = v/u$ denotes the tightness of the labor market

Labor Market

Matching function

$$M(u,v) = \phi u^{1-\gamma} v^{\gamma} \tag{2}$$

- $\triangleright \phi$ represents the efficiency of the matching process and γ denotes the matching elasticity
- \bullet $\theta = v/u$ denotes the tightness of the labor market
- ▶ In the steady state, unemployment inflows equals unemployment outflows

$$s(1-u) = \theta q(\theta)u$$

$$\Rightarrow u = \frac{s}{s + \theta q(\theta)}$$
(3)

 \triangleright s denotes separation rate

The Firm

The representative firm in a city uses productive land and labor to produce consumption goods

$$Y = AN^{1-\sigma}L_p^{\sigma} \tag{4}$$

• A is the city-level productivity, N is the city-level employment, and L_p is the quantity of productive land

The Firm

The representative firm in a city uses productive land and labor to produce consumption goods

$$Y = AN^{1-\sigma}L_p^{\sigma} \tag{4}$$

• A is the city-level productivity, N is the city-level employment, and L_p is the quantity of productive land

▶ Let y = Y/N and $\ell_p = L_p/N$, the demand for productive land

$$q_p = (1 - \tau) A \sigma \ell_p^{\sigma - 1} \tag{5}$$

where τ denotes a sales tax

Job Creation

▶ Value of a firm posting a vacancy

$$rJ^V = -\gamma_0 + q(\theta)(J^F - J^V) \tag{6}$$

Job Creation

▶ Value of a firm posting a vacancy

$$rJ^V = -\gamma_0 + q(\theta)(J^F - J^V) \tag{6}$$

▶ Value of a filled job

$$rJ^F = (1-\tau)A\ell_p^{\sigma} - q_p\ell_p - w - sJ^F \tag{7}$$

Job Creation

► Value of a firm posting a vacancy

$$rJ^V = -\gamma_0 + q(\theta)(J^F - J^V) \tag{6}$$

▶ Value of a filled job

$$rJ^F = (1-\tau)A\ell_p^\sigma - q_p\ell_p - w - sJ^F \tag{7}$$

▶ The labor demand curve

$$(1-\tau)A\ell_p^{\sigma} - q_p\ell_p - w - \frac{(r+s)\gamma_0}{q(\theta)} = 0$$
(8)

 \triangleright γ_0 denotes the cost of creating a vacancy

Wage Determination

► The expected income

$$W = \theta q(\theta)w + [1 - \theta q(\theta)]b$$

Wage Determination

► The expected income

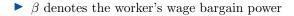
$$W = \theta q(\theta)w + [1 - \theta q(\theta)]b$$

▶ Asymmetric Nash bargain

$$\left((1-\tau)A\ell_p^{\sigma}-q_p\ell_p+\theta\gamma_0-w\right)^{1-\beta}(w-b)^{\beta}$$

Wage Determination

▶ The expected income


$$W = \theta q(\theta)w + [1 - \theta q(\theta)]b$$

Asymmetric Nash bargain

$$\left((1-\tau)A\ell_p^{\sigma}-q_p\ell_p+\theta\gamma_0-w\right)^{1-\beta}(w-b)^{\beta}$$

▶ The wage equation

$$w = (1 - \beta)b + \beta((1 - \tau)A\ell_p^{\sigma} - q_p\ell_p + \theta\gamma_0)$$
(9)

Housing Market

▶ A residential housing developer produces houses

$$H = ZL_r^\eta \tag{10}$$

Housing Market

▶ A residential housing developer produces houses

$$H = ZL_r^\eta \tag{10}$$

▶ The demand for residential land

$$q_r = Z\eta L_r^{\eta-1}p \tag{11}$$

Housing Market

▶ A residential housing developer produces houses

$$H = ZL_r^\eta \tag{10}$$

▶ The demand for residential land

$$q_r = Z\eta L_r^{\eta-1}p \tag{11}$$

▶ Housing market clearing

$$ZL_r^\eta = h \times L_0$$

 \blacktriangleright L₀ denotes city population

The Regional Government

► A regional government collects revenue from land leases and taxes, and transfer *T* to its citizens

$$T = q_p L_p + q_r L_r + \tau Y \tag{12}$$

The Regional Government

► A regional government collects revenue from land leases and taxes, and transfer *T* to its citizens

$$T = q_p L_p + q_r L_r + \tau Y \tag{12}$$

Let L = L_p + L_r denote the overall land and normalize to unity
 let λ = L_p/L denote the share of land use for commercial purposes
 the allocation of commercial land L_p and residential land L_r are governed by the parameter λ

▶ back

Equilibrium

- ▶ A steady-state competitive equilibrium consists of a series of
 - ▶ prices: rent of productive land q_p , rent of residential land q_r , housing price p, and wage w

Equilibrium

▶ A steady-state competitive equilibrium consists of a series of

- ▶ prices: rent of productive land q_p , rent of residential land q_r , housing price p, and wage w
- ▶ allocations: output Y, housing H, productive land L_p , residential land L_r , city population L_0 , and workers N

Equilibrium

▶ A steady-state competitive equilibrium consists of a series of

- ▶ prices: rent of productive land q_p , rent of residential land q_r , housing price p, and wage w
- ▶ allocations: output Y, housing H, productive land L_p , residential land L_r , city population L_0 , and workers N
- ▶ such that
 - ▶ household, production firm, and housing developer are optimize
 - labor, land, housing, and goods markets are clear

Calibration Strategy

Matching Elasticity and Efficiency

$$\ln e_{it} = \gamma \ln \theta_{it} + a_i + f(trend) + \varepsilon_{it}$$

where $e_{it} = M_{it}/U_{it}$ is employment rate, $\theta_{it} = V_{it}/U_{it}$ is the labor market tightness

Calibration Strategy

Matching Elasticity and Efficiency

$$\ln e_{it} = \gamma \ln \theta_{it} + a_i + f(trend) + \varepsilon_{it}$$

where $e_{it} = M_{it}/U_{it}$ is employment rate, $\theta_{it} = V_{it}/U_{it}$ is the labor market tightness

Labor Bargaining Power

$$w_{it} = (1 - \beta)b + \beta p_{it} + \beta \gamma_0 \theta_{it} + c_i + c_t + \varepsilon_{it}$$

Calibration Strategy

Matching Elasticity and Efficiency

$$\ln e_{it} = \gamma \ln \theta_{it} + a_i + f(trend) + \varepsilon_{it}$$

where $e_{it} = M_{it}/U_{it}$ is employment rate, $\theta_{it} = V_{it}/U_{it}$ is the labor market tightness

Labor Bargaining Power

$$w_{it} = (1 - \beta)b + \beta p_{it} + \beta \gamma_0 \theta_{it} + c_i + c_t + \varepsilon_{it}$$

Housing Elasticity and Productivity

$$\ln H_{it} = \ln Z + \eta \ln(1 - \lambda_{it}) + h_i + h_t + \varepsilon_{it}$$

Model Parameters Estimation

	Employment Rate		Real Wage		Housing Supply	
	(1)	(2)	(3)	(4)	(5)	(6)
	OLS	2SLS	OLS	2SLS	OLS	2SLS
Tightness	0.8067***	0.5258***	0.8255**	0.7736***		
	(0.0691)	(0.1831)	(0.3868)	(0.2849)		
Unemployment Benefits			0.1509^{***}	0.6402***		
			(0.0265)	(0.0554)		
Labor Productivity			0.8491***	0.3598^{***}		
			(0.0265)	(0.0554)		
Residential Land Share					1.2779^{***}	1.6852***
					(0.2181)	(0.4055)
f(Trend)	YES	YES				
Region FE	YES	YES	YES	YES	YES	YES
Year FE			YES	YES	YES	YES
Ν	308	280	297	270	3,025	2,750