Science Olympiad 2019 Teacher's Workshop NMT Nov 2, 2018.

Thermodynamics

Carlos.LopezCarrillo@nmt.edu

Description

- Team size:Up to 2
- Impound: Yes
- Eye Protection: Required
- Time: 50 minutes
- Event parameters: Rulers, Protractors, Templates Calculator and Notes (3-Ring Bounder)
- (2.b ... two stand-alone calculatorsf any type ...)

Description

Teams must construct an insulating device prior to the tournament that is designed to

retain heat and complete a written test on thermodynamic concepts.

Construction (critical parameters)

	Scoring	
Part		Points
Test Score	(TS)	[0, 45]
Chart Score	(CS)	[0, 10]
Heat Score	(HS)	[0, 20]
Prediction Score	(PS)	[0, 25]

Final Score = TS + CS + HS + PS [0,100]

Test Score

TS = 45 x Test's Pointage / Highest Pointage (from all Teams)

Chart Score

1) **2 points** for including data spanning at least one variable range listed in 4.Part I.a.

volume of water (State): 75 - 125 mL, 25 mL increments;

cooling time: Div. B: 25.0 mins; Div. C: 20.0-30.0 mins, 1-minute increments.

Chart Score

2) **2 points** for including at least 10 data points in each data series

Example of a data series

	Table 1: 100 ml Data Chart.					
Time	Temperature	Time	Temperature			
(minutes)	(C)	(minutes)	(C)			
0.0	80.0	16.0	23.5			
1.0	70.1	17.0	22.813262			
2.0	61.9	18.0	22.349834			
3.0	55.0	19.0	21.962746			
4.0	49.2	20.0	21.639423			
5.0	44.0	21.0	21.369361			
6.0	40.4	22.0	21.143787			
7.0	37.2	23.0	20.955371			
8.0	34.2	24.0	20.797993			
9.0	31.9	25.0	20.666540			
10.0	29.9	26.0	20.556741			
11.0	28.3	27.0	20.465029			
12.0	26.9	28.0	20.388425			
13.0	25.8	29.0	20.324440			
14.0	24.8	30.0	20.270995			
15.0	24.0					

Chart Score

3) **2 points** for proper labeling (e.g. title, team name, units)

 0.5 points for each graph or table turned in (up to <u>2 points total</u> as long as they are not the same)

5) **2 points** for including a labeled device picture or diagram

Chart Example

Heat Score

HS = 20 x (lowest k of all teams) / k,

where k is from Newton's law of cooling:

Newton's law of Cooling

$$\frac{dT}{dt} = -K(T - T_r)$$

where *K* is a constant and T_r is a reference temperature.

$$T(t) = T_r + (T_0 - T_r) \exp(-K(t - t_0))$$

$$K = \frac{1}{t_f - t_0} \ln\left(\frac{T_0 - T_r}{T_f - T_r}\right)$$

Where $T_f = T(t_f)$

Heat Score

k = - (1 / cooling time) x ln((start water temp room temp) / (final water temp - room temp))

Newton's law of Cooling

Heat Transfer for Various Coefficients

Prediction Score

PS = 25 - 2.5*abs(prediction - final temp).

The minimum PS possible is 0 points.

Penalties

• Competition violations:

PS x 0.9; K x 1.1

 Construction violations corrected during part I, or missing impound:

PS x 0.7; K x 1.4

Unsafe Operation or Non-conforming
Insulation at start of part I:

HS = PS = 0.

Tie Breakers

1) Best Test Score (TS),

2) Best Prediction Score (PS),

3) Best Heat Score (HS).

Room Setup

Running the Event

Impound	8:00 to 9:00	All Teams
Teams 1-8	9:00 to 9:50	
Teams 8-16	10:00 to 10:50	
Teams 16-24	11:00 to 11:50	
Teams 22-Rest	11:00 to 11:50	?

- Maximum number of teams per session 8.
- Team number according to Official List (?).
- Impound is mandatory.

Running the Event

•All teams have 25 minutes to Complete the written Test.

•Teams start the written test imidiatly after they make their final prediction.

•Teams interrupt work on the written test, to record Final Temperature.

Running the Event

Dispensing Water to Each Team

1 (min)	Team 1							
2		Team 2						
3			Team 3					
4				Team 4				
5					Team 5			
6						Team 6		
7							Team 7	
8 (min)								Team 8

Written Test

- History of Thermodynamis
- Temperature, units conversions
- Phase transitions, latent heat
- Heat Transfer, thermal conductivity, heat capacity

- Thermodynamics laws, Processes
- Division C: Radiant Exitance, Entropy, Enthalpy.

Resources

https://www.soinc.org/thermodynamics-c

Carlos.LopezCarrillo@nmt.edu